Skip to main content
Log in

Lévy noise-induced near-death spikes and phase transitions of a biological neural network

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Near-death spikes or near-death surges are a sudden increase in neuron activity in the human brain before neurons end their firings. Just before a person is clinically dead, such spikes are observed in certain cases, so the name is near-death spikes. The reason for this behavior is the lack of oxygen in brain (Chawla et al. in J Palliat Med 12(12):1095–1100, 2009). In this study, it is demonstrated that a particular type of noise called Lévy noise can generate such activity in the neural network of the worm Caenorhabditis elegans. The study identified different parameter regions of noise at which the network makes transitions from one synchronous state to another and the mechanism behind them. Such transitions are already reported in cortical regions of brain (Canavero et al. in Surg Neurol Int 7(Suppl 24):S623–S625, 2016). During the transition period between asynchronous and synchronous firing states, network is more susceptible to changes in firing pattern of individual neurons (Zandt et al. in PLoS ONE 6(7):e22127, 2011; Uzuntarla et al. Neural Netw 110:131–140, 2019). In this work, it is demonstrated that the recognized parameter regions can be used to control the network dynamics. The study also identified Lévy noise values at which the network displays generation of waves of different frequencies. This result suggests a new method for neurostimulation in the case of traumatic brain injury. The study reveals that the characteristic exponent (\(\alpha \)) of the noise has better influence on the network dynamics than the scale parameter of noise (D) and the synaptic coupling constant (Gsyn) of the network. The neuronal network even displayed Gamma oscillations for large values of \(\alpha \). If the parameters of the neurons are made chaotic, the network firing rate is diminished and it displayed Delta and Theta oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Chawla, L.S., Akst, S., Junker, C., Jacobs, B., Seneff, M.G.: Surges of electroencephalogram activity at the time of death: a case series. J. Palliat. Med. 12(12), 1095–1100 (2009)

    Google Scholar 

  2. Canavero, S., Ren, X., Kim, C.Y.: HEAVEN: the Frankenstein effect. Surg. Neurol. Int. 7(Suppl 24), S623–S625 (2016)

    Google Scholar 

  3. Zandt, B.-J., ten Haken, B., van Dijk, J.G., van Putten, M.J.A.M.: Neural dynamics during anoxia and the wave of death. PLoS ONE 6(7), e22127 (2011)

    Google Scholar 

  4. Uzuntarla, M., Torres, J.J., Calim, A., Barreto, E.: Synchronization-induced spike termination in networks of bistable neurons. Neural Netw. 110, 131–140 (2019)

    Google Scholar 

  5. Mineeja, K.K., Ignatius, R.P.: Spatiotemporal activities of a pulse-coupled biological neural network. Nonlinear Dyn. 92(4), 1881–1897 (2018)

    Google Scholar 

  6. Guo, D., Wu, S., Chen, M., Perc, M., Zhang, Y., Ma, J., Cui, Y., Xu, P., Xia, Y., Yao, D.: Regulation of irregular neuronal firing by autaptic transmission. Sci. Rep. 6, 26096 (2016)

    Google Scholar 

  7. Jia, Y., Gu, H.: Phase noise-induced double coherence resonances in a neuronal model. Int. J. Mod. Phys. B. 29(20), 1550142 (2015)

    MathSciNet  Google Scholar 

  8. Bordet, M., Morfu, S.: Experimental and numerical study of noise effects in a FitzHugh–Nagumo system driven by a biharmonic signal. Chaos Solitons Fractals 54, 82–89 (2013)

    MathSciNet  Google Scholar 

  9. Sun, X.J., Lei, J.Z., Perc, M., Lu, Q.S., Lv, S.J.: Effects of channel noise on firing coherence of small-world Hodgkin–Huxley neuronal networks. Eur. Phys. J. B 79(1), 61–66 (2011)

    Google Scholar 

  10. Zhou, C., Kurths, J.: Noise-induced synchronization and coherence resonance of a Hodgkin–Huxley model of thermally sensitive neurons. Chaos 13, 401–409 (2003)

    Google Scholar 

  11. Perc, M.: Spatial coherence resonance in excitable media. Phys. Rev. E 72, 016207 (2005)

    MathSciNet  Google Scholar 

  12. Gao, F.Y., Kang, Y.M., Chen, X., Chen, G.: Fractional Gaussian noise-enhanced information capacity of a nonlinear neuron model with binary signal input. Phys. Rev. E 97(5), 1–11 (2018)

    Google Scholar 

  13. Perc, M.: Spatial decoherence induced by small-world connectivity in excitable media. New J. Phys. 7, 252 (2005)

    Google Scholar 

  14. Wang, H., Chen, Y.: Spatiotemporal activities of neural network exposed to external electric fields. Nonlinear Dyn. 85(2), 881–891 (2016)

    MathSciNet  Google Scholar 

  15. Aguila, J., Cudeiro, J., Rivadulla, C.: Effects of static magnetic fields on the visual cortex: reversible visual deficits and reduction of neuronal activity. Cereb. Cortex 26(2), 628–638 (2016)

    Google Scholar 

  16. Rosen, A.D.: Studies on the effect of static magnetic fields on biological systems. PIERS Online 6(2), 133–136 (2010)

    Google Scholar 

  17. Gonzalez-Rosa, J.J., Soto-Leon, V., Real, P., Carrasco-Lopez, C., Foffani, G., Strange, B.A., Oliviero, A.: Static magnetic field stimulation over the visual cortex increases alpha oscillations and slows visual search in humans. J. Neurosci. 35(24), 9182–9193 (2015)

    Google Scholar 

  18. Oliviero, A., Mordillo-Mateos, L., Arias, P., Panyavin, I., Foffani, G., Aguilar, J.: Transcranial static magnetic field stimulation of the human motor cortex. J. Physiol. 589(20), 4949–4958 (2011)

    Google Scholar 

  19. Dini, L., Abbro, L.: Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 36(3), 195–217 (2005)

    Google Scholar 

  20. Wang, Z.Q., Xu, Y., Yang, H.: Lévy noise induced stochastic resonance in an FHN model. Sci. China Technol. Sci. 59(3), 371–375 (2016)

    Google Scholar 

  21. Ariel, G., Rabani, A., Benisty, S., Partridge, J.D., Harshey, R.M., Be’er, A.: Swarming bacteria migrate by Lévy Walk. Nat. Commun. 6, 8396 (2015)

    Google Scholar 

  22. Perc, M.: Transition from Gaussian to Lévy distributions of stochastic payoff variations in the spatial prisoner’s dilemma game. Phys. Rev. E 75, 022101 (2007)

    Google Scholar 

  23. Applebaum, D.: Lévy processes—from probability to finance and quantum groups. Not. Am. Math. Soc. 51(11), 1336–1347 (1998)

    MATH  Google Scholar 

  24. Vecer, J., Xu, M.: Pricing Asian options in a semimartingale model. Quant. Finance 4(2), 1–10 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Chan, T.: Pricing contingent claims on a stocks driven by Lévy processes. Ann. Appl. Probab. 9(2), 504–528 (1999)

    MathSciNet  MATH  Google Scholar 

  26. Perc, M.: Flights towards defection in economic transactions. Econ. Lett. 97, 58–63 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Shlesinger, M.F., Klafter, J., West, B.J.: Lévy walks with applications to turbulence and chaos. Phys. A 140(1–2), 212–218 (1986)

    MathSciNet  Google Scholar 

  28. Shlesinger, M.F., West, B.J., Klafter, J.: Lévy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58(11), 1100–1103 (1987)

    MathSciNet  Google Scholar 

  29. Patel, A., Kosko, B.: Stochastic resonance in continuous and spiking neuron models with Lévy noise. IEEE Trans. Neural Netw. 19(12), 1993–2008 (2008)

    Google Scholar 

  30. Cai, R., Chen, X., Duan, J., Kurths, J., Li, X.: Lévy noise-induced escape in an excitable system. J. Stat. Mech. 2017, 063503 (2017)

    Google Scholar 

  31. Wu, J., Xu, Y., Ma, J.: Lévy noise improves the electrical activity in a neuron under electromagnetic radiation. PLoS ONE 12(3), e0174330 (2017)

    Google Scholar 

  32. Zeng, C., Yang, Q.: Dynamics of the stochastic Lorenz chaotic system with long memory effects. Chaos 25, 123114 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Yang, J., Zhou, W., Shi, P., Yang, X., Zhou, X., Su, H.: Adaptive synchronization of delayed Markovian switching neural networks with Lévy noise. Neurocomputing 156, 231–238 (2015)

    MATH  Google Scholar 

  34. Zhou, L., Wang, Z., Zhou, J., Zhou, W.: Mean square synchronization of neural networks with Lévy noise via sampled-data and actuator saturating controller. Neurocomputing 173(3), 1235–1244 (2016)

    Google Scholar 

  35. Vinaya, M., Ignatius, R.P.: Effect of Lévy noise on the networks of Izhikevich neurons. Nonlinear Dyn. 94(2), 1133–1150 (2018)

    Google Scholar 

  36. Schröter, M., Paulsen, O., Bullmore, E.: Micro-connectomics: probing the organization of neuronal networks at the cellular scale. Nat. Rev. Neurosci. 18, 131–146 (2017)

    Google Scholar 

  37. Wang, Q., Zheng, Y., Ma, J.: Cooperative dynamics in neuronal networks. Chaos Solitons Fractals 56, 19–27 (2013)

    Google Scholar 

  38. Cichy, R.M., Khosla, A., Pantazis, D., Torralba, A., Oliva, A.: Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence. Sci. Rep. 6, 27755 (2016)

    Google Scholar 

  39. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 6 (2003)

    Google Scholar 

  40. Altun, Z.F., Hall, D.H.: Nervous system, general description. http://www.wormatlas.org/hermaphrodite/nervous/Neuroframeset.html. Accessed 26 April 2016

  41. Xu, Y., Li, Y., Zhang, H., Li, X., Kurths, J.: The switch in a genetic toggle system with Lévy noise. Sci. Rep. 6, 31505 (2016)

    Google Scholar 

  42. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw. 15, 5 (2004)

    Google Scholar 

  43. Buskila, Y., Bellot-Saez, A., Morley, J.W.: Generating brain waves, the power of astrocytes. Front. Neurosci. 13, 1125 (2019)

    Google Scholar 

  44. Bogaard, A., Parent, J., Zochowski, M., Booth, V.: Interaction of cellular and network mechanisms in spatiotemporal pattern formation in neuronal networks. J. Neurosci. 29(6), 1677–1687 (2009)

    Google Scholar 

  45. Fink, C.G., Booth, V., Zochowski, M.: Cellularly-driven differences in network synchronization propensity are differentially modulated by firing frequency. PLoS Comput. Biol. 7(5), e1002062 (2011)

    MathSciNet  Google Scholar 

  46. Thottil, S.K., Ignatius, R.P.: Nonlinear feedback coupling in Hindmarsh–Rose neurons. Nonlinear Dyn. 87(3), 1879–1899 (2017)

    Google Scholar 

  47. Nobukawa, S., Nishimura, H., Yamanishi, T., Liu, J.: Chaotic dynamical states in the Izhikevich neuron model. In: Tran, Q.N., Arabnia, H. (eds.) Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology, pp. 355–375. Elsevier Inc, Amsterdam (2015)

    Google Scholar 

  48. Pevzner, A., Izadi, A., Lee, D.J., Shahlaie, K., Gurkoff, G.G.: Making waves in the brain?: What are oscillations, and why modulating them makes sense for brain injury. Front. Syst. Neurosci. 10, 30 (2016)

    Google Scholar 

  49. Jercog, D., Roxin, A., Barthó, P., Luczak, A., Compte, A., de la Rocha, J.: UP-DOWN cortical dynamics reflect state transitions in a bistable network. Elife. 6, e22425 (2017)

    Google Scholar 

  50. Sahasranamam, A., Vlachos, I., Aertsen, A., Kumar, A.: Dynamical state of the network determines the efficacy of single neuron properties in shaping the network activity. Sci. Rep. 6, 26029 (2016)

    Google Scholar 

  51. Kinouchi, O., Copelli, M.: Optimal dynamical range of excitable networks at criticality. Nat. Phys. 2, 348–351 (2006)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Mahatma Gandhi University Junior Research Fellowship. U.O. No. 529/A6/J.R.F. 2018-19/Academic dated 02/02/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Mineeja.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mineeja, K.K., Ignatius, R.P. Lévy noise-induced near-death spikes and phase transitions of a biological neural network. Nonlinear Dyn 99, 3265–3283 (2020). https://doi.org/10.1007/s11071-020-05472-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05472-2

Keywords

Navigation