Skip to main content

Neurons and Near-Death Spikes

  • Chapter
  • First Online:
Modern Perspectives in Theoretical Physics
  • 615 Accesses

Abstract

Near-death spikes or near-death surges represent sudden increase in neuron activity in the human brain before neurons end their firing. Just before a person is clinically dead, such spikes are observed in certain cases, so it got the name ‘near-death spikes’. The reason for this behaviour is the lack of oxygen in brain. The neural network of the worm Caenorhabditis elegans resembles that of human brain. Hence it can be used to understand the simple dynamics of human brain. Within the network, the neurons are found to exhibit chaotic nature, even though their parameters are that of normal neurons. It is observed that when the strength of synaptic conductance is increased, initially the bursting synchronization, entropy of the network and the average firing rate decrease slightly and then increase. As the neurons of the network are made chaotic, ‘near-death’-like surges of neuron activity are observed. Also, the brain dynamics changes from alert to rest state. It can be demonstrated that a particular type of noise called Lévy noise can generate ‘near-death’-like surges in the neural network of the worm Caenorhabditis elegans. Identification of different parameter regions of Lévy noise at which the network makes transitions from one synchronous state to another and the mechanism behind them is a challenging subject. Such transitions are already reported in cortical regions of brain. The Lévy noise values at which the network displays generation of waves of different frequencies can be determined. This result suggests a new method for neuro stimulation in the case of traumatic brain injury. The neuronal network even displayed Gamma oscillations. If the parameters of the neurons are made chaotic, the network firing rate is diminished and it displayed Delta and Theta oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.M. Izhikevich, Dynamical Systems in Neuroscience (MIT Press, Cambridge, 2014)

    Google Scholar 

  2. W. Zou, D.V. Senthilkumar, A. Koseska, J. Kurths. Phys. Rev. E. 88, 50901 (2013)

    Article  ADS  Google Scholar 

  3. T. Banerjee, D. Biswas, Chaos Interdiscip. J. Nonlinear Sci. 23, 43101 (2013)

    Google Scholar 

  4. J. Ma, J. Tang, Sci. China Technol. Sci. 58(12), 2038 (2015)

    Article  ADS  Google Scholar 

  5. C.G. Antonopoulos, A.S. Fokas, T.C. Bountis, Eur. Phys. J. Spec. Top. 225(6–7), 1255 (2016)

    Article  Google Scholar 

  6. W. Sato, T. Kochiyama, S. Uono, Sci. Rep. 5, 12432 (2015)

    Article  ADS  Google Scholar 

  7. R.M. Cichy, A. Khosla, D. Pantazis, A. Torralba, A. Oliva, Sci. Rep. 6, 27755 (2016)

    Article  ADS  Google Scholar 

  8. H. Wang, Y. Chen, Nonlinear Dyn. 85(2), 881 (2016)

    Article  Google Scholar 

  9. J. Wu, Y. Xu, J. Ma, PLoS One 12(3), e0174330 (2017)

    Article  Google Scholar 

  10. S. Guo, J. Tang, J. Ma, C. Wang, Complexity 2017, 4631602 (2017)

    Google Scholar 

  11. J. Tang, J. Zhang, J. Ma, G. Zhang, X. Yang, Sci. China Technol. Sci. 60(7), 1011 (2017)

    Article  ADS  Google Scholar 

  12. K.K. Mineeja, R.P. Ignatius, Nonlinear Dyn. 92(4), 1881 (2018)

    Article  Google Scholar 

  13. M. Schröter, O. Paulsen, E. Bullmore, Nat. Rev. Neurosci. 18, 131 (2017)

    Article  Google Scholar 

  14. E.M. Izhikevich, IEEE Trans. Neural Netw. 15, 5 (2004)

    Article  Google Scholar 

  15. S. Nobukawa, H. Nishimura, T. Yamanishi, J. Liu, Emerging Trends in Computational Biology, Bioinformatics and Systems Biology (Elsevier Inc., 2015), p. 355

    Google Scholar 

  16. W. Jin, Q. Lin, A. Wang, C. Wang, Complexity 2017, 4797545 (2017)

    Article  Google Scholar 

  17. L. Norton, R.M. Gibson, T. Gofton, C. Benson, S. Dhanani, S.D. ShemieL, R. Ward Hornby, G.B. Young, Can. J. Neurol. Sci. 44(2), 139 (2017)

    Google Scholar 

  18. M. Uzuntarla, J.J. Torres, A. Calim, E. Barreto, Neural Netw. 110, 131 (2019)

    Article  Google Scholar 

  19. B.J. Zandt, B. ten Haken, J.G. Van Dijk, M.J.A.M. van Putten, PLoS One 6(7), e22127 (2011)

    Article  ADS  Google Scholar 

  20. F.Y. Gao, Y.M. Kang, X. Chen, G. Chen, Phys. Rev. E. 97(5), 1–11 (2018)

    Google Scholar 

  21. J. Aguila, J. Cudeiro, C. Rivadulla, Cereb. Cortex. 26(2), 628 (2016)

    Google Scholar 

  22. A.D. Rosen, PIERS Online 6(2), 133 (2010)

    Article  Google Scholar 

  23. J.J. Gonzalez-rosa, V. Soto-leon, P. Real, C. Carrasco-lopez, G. Foffani, B.A. Strange, A. Oliviero, J. Neurosci. 35(24), 9182 (2015)

    Article  Google Scholar 

  24. A. Oliviero, L. Mordillo-Mateos, P. Arias, I. Panyavin, G. Foffani, J. Aguilar, J. Physiol. 589(20), 4949 (2011)

    Article  Google Scholar 

  25. G. Ariel, A. Rabani, S. Benisty, J.D. Partridge, R.M. Harshey, A. Be’er, Nat. Commun. 6, 8396 (2015)

    Article  ADS  Google Scholar 

  26. R. Cai, X. Chen, J. Duan, J. Kurths, X. Li, J. Stat. Mech. 063503, (2017)

    Google Scholar 

  27. M. Vinaya, R.P. Ignatius, Nonlinear Dyn. 94(2), 1133 (2018)

    Article  Google Scholar 

  28. K.K. Mineeja, R.P. Ignatius, Nonlinear Dyn. 99, 3265 (2020)

    Article  Google Scholar 

  29. J. Yang, W. Zhou, P. Shi, X. Yang, X. Zhou, H. Su, Neurocomputing 156, 231 (2014)

    Article  Google Scholar 

  30. L. Zhou, Z. Wang, J. Zhou, W. Zhou, Neurocomputing 173(3), 1235 (2016)

    Article  Google Scholar 

  31. Y. Xu, Y. Li, H. Zhang, X. Li, J. Kurths, Sci. Rep. 6, 31505 (2016)

    Article  ADS  Google Scholar 

  32. Y. Buskila, A. Bellot-Saez, J.W. Morley, J.W. Front, Neuroscience 13, 1125 (2019)

    Google Scholar 

  33. A. Pevzner, A. Izadi, D.J. Lee, K. Shahlaie, G.G. Gurkoff, Front. Syst. Neurosci. 10, 30 (2016)

    Article  Google Scholar 

  34. C. Zeng, Q. Yang, Chaos 25, 123114 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rose P. Ignatius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ignatius, R.P. (2021). Neurons and Near-Death Spikes. In: Sreelatha, K.S., Jacob, V. (eds) Modern Perspectives in Theoretical Physics. Springer, Singapore. https://doi.org/10.1007/978-981-15-9313-0_10

Download citation

Publish with us

Policies and ethics