Skip to main content
Log in

Attitude evolution of a dual-liquid-filled spacecraft with internal energy dissipation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the attitude evolution of a dual-liquid-filled spacecraft with internal energy dissipation is investigated. The dynamic equations of the spacecraft system are established to study various trajectories including major axis spin, period-n limit cycle, and chaotic motion. A criterion is obtained by Melnikov’s method to predict the occurrence of chaotic motion of the system. The effects of system parameters, especially liquid parameters, on the chaotic region, are discussed in detail. The comparison of analytical and numerical results shows that our criterion can accurately separate the chaotic from nonchaotic region of the system in parameter space. Therefore, this paper contributes to avoid the potentially periodic and chaotic motions of spacecraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hughes, P.C.: Spacecraft Attitude Dynamics. Wiley, New York (1986)

    Google Scholar 

  2. Liu, Y.Z., Chen, L.Q.: Chaos in Attitude Dynamics of Spacecraft. Springer, Berlin (2013)

    Book  Google Scholar 

  3. Bracewell, R.N., Garriott, O.K.: Rotation of artificial earth satellites. Nature 182(4638), 760–762 (1958)

    Article  Google Scholar 

  4. Melnikov, V.K.: On the stability of a center for time periodic perturbations. Trans. Mosc. Math. Soc. 12, 3–52 (1963)

    MathSciNet  Google Scholar 

  5. Yam, Y., Mingori, D.L., Halsmer, D.M.: Stability of a spinning axisymmetric rocket with dissipative internal mass motion. J. Guidance Control Dyn. 20(2), 306–312 (1997)

    Article  Google Scholar 

  6. Tong, X., Tabarrok, B.: Bifurcation of self-excited rigid bodies subjected to small perturbation torques. J. Guidance Control Dyn. 20(1), 605–615 (1997)

    Article  Google Scholar 

  7. Or, A.C.: Chaotic motions of a dual-spin body. J. Appl. Mech. 65(1), 150–156 (1998)

    Article  Google Scholar 

  8. Chen, L.Q., Liu, Y.Z.: Chaotic attitude motion of a magnetic rigid spacecraft and its control. Int. J. Non-Linear Mech. 37(3), 493–504 (2002)

    Article  MathSciNet  Google Scholar 

  9. Meehan, P.A., Asokanthan, S.F.: Control of chaotic instability in a dual-spin spacecraft with dissipation using energy methods. Multibody Syst. Dyn. 7(2), 171–188 (2002)

    Article  MathSciNet  Google Scholar 

  10. Meehan, P.A., Asokanthan, S.F.: Analysis of chaotic instabilities in a rotating body with internal energy dissipation. Int. J. Bifurc. Chaos 16(1), 1–19 (2006)

    Article  MathSciNet  Google Scholar 

  11. Kuang, J., Leung, A.Y.T., Tan, S.: Hamiltonian and chaotic attitude dynamics of an orbiting gyrostat satellite under gravity-gradient torques. Physica D 186(1–2), 1–19 (2003)

    Article  MathSciNet  Google Scholar 

  12. Shirazi, K.H., Ghaffari-Saadat, M.H.: Bifurcation and chaos in an apparent-type gyrostat satellite. Nonlinear Dyn. 39, 259–274 (2005)

    Article  MathSciNet  Google Scholar 

  13. Iñarrea, M.: Chaotic pitch motion of a magnetic spacecraft with viscous drag in an elliptical polar orbit. Int. J. Bifurc. Chaos 21(7), 1959–1975 (2011)

    Article  Google Scholar 

  14. Aslanov, V.S., Ledkov, A.S.: Chaotic motion of a reentry capsule during descent into the atmosphere. J. Guidance Control Dyn. 39(8), 1834–1843 (2016)

    Article  Google Scholar 

  15. Liu, J., Chen, L., Cui, N.: Solar sail chaotic pitch dynamics and its control in earth orbits. Nonlinear Dyn. 90(3), 1755–1770 (2017)

    Article  MathSciNet  Google Scholar 

  16. Gray, G.L., Kammer, D.C., Dobson, I.: Heteroclinic bifurcations in rigid bodies containing internally moving parts and a viscous damper. J. Appl. Mech. 66(3), 720–728 (1999)

    Article  Google Scholar 

  17. Miller, A.J., Gray, G.L.: Nonlinear spacecraft dynamics with a flexible appendage, damping, and moving internal submasses. J. Guidance Control Dyn. 24(3), 605–615 (2001)

    Article  Google Scholar 

  18. Yue, B.: Study on the chaotic dynamics in attitude maneuver of liquid-filled flexible spacecraft. AIAA J. 49(10), 2090–2099 (2011)

    Article  Google Scholar 

  19. Nichkawde, C., Harish, P.M., Ananthkrishnan, N.: Stability analysis of a multibody system model for coupled slosh-vehicle dynamics. J. Sound Vib. 275(3–5), 1069–1083 (2004)

    Article  Google Scholar 

  20. Kuang, L.K., Meehan, P.A., Leung, A.Y.T.: On the chaotic rotation of a liquid-filled gyrostat via the Melnikov-Holmes-Marsden integral. Int. J. Non-Linear Mech. 41, 475–490 (2006)

    Article  Google Scholar 

  21. Zhou, L., Chen, Y., Chen, F.: Stability and chaos of a damped satellite partially filled with liquid. Acta Astronaut. 65(11–12), 1628–1638 (2009)

    Article  Google Scholar 

  22. Chegini, M., Sadati, H., Salarieh, H.: Chaos analysis in attitude dynamics of a flexible satellite. Nonlinear Dyn. 93(3), 1421–1438 (2018)

    Article  Google Scholar 

  23. Chegini, M., Sadati, H.: Chaos analysis in attitude dynamics of a satellite with two flexible panels. Int. J. Non-Linear Mech. 103, 55–67 (2018)

    Article  Google Scholar 

  24. Chegini, M., Sadati, H., Salarieh, H.: Analytical and numerical study of chaos in spatial attitude dynamics of a satellite in an elliptic orbit. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233(2), 561–577 (2019)

    Article  Google Scholar 

  25. Doroshin, A.V.: Heteroclinic dynamics and attitude motion chaotization of coaxial bodies and dual-spin spacecraft. Commun. Nonlinear Sci. Numer. Simul. 17(3), 1460–1474 (2012)

    Article  MathSciNet  Google Scholar 

  26. Doroshin, A.V.: Chaos as the hub of systems dynamics. the part I–the attitude control of spacecraft by involving in the heteroclinic chaos. Commun. Nonlinear Sci. Numer. Simul. 59, 47–66 (2018)

    Article  MathSciNet  Google Scholar 

  27. Holmes, P.J., Marsden, J.E.: Horseshoes and Arnold diffusion for Hamiltonian systems on Lie groups. Indiana Univ. Math. J. 32(2), 273–309 (1983)

    Article  MathSciNet  Google Scholar 

  28. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65(1–2), 117–134 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant Nos. 11772187 and 11802174) and the China Postdoctoral Science Foundation (Grant No. 2018M632104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, X., Cai, G. et al. Attitude evolution of a dual-liquid-filled spacecraft with internal energy dissipation. Nonlinear Dyn 99, 2251–2263 (2020). https://doi.org/10.1007/s11071-019-05440-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05440-5

Keywords

Navigation