Skip to main content
Log in

Concurrent instabilities causing multiple rogue waves in infinite-dimensional dynamical systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Complex instabilities are the major reason for drastic changes and extreme events in dynamical systems. Several modes of instability growing simultaneously with nonlinear interaction between them may lead to unforeseeable outcomes leading to catastrophic consequences. The most common examples of these instabilities are the modulation instability (MI). Studies show that an infinite number of instability modes remain active in a dynamical system. Although a one-mode MI can be analysed in the frame of a precise mathematical model, namely the Akhmediev breather, the dynamics of several concurrent MI modes referred to as the higher-order MI is very difficult to handle. We developed a unique geometrical approach that provides an entirely new and intuitive way to deal with higher-order MI. We apply this approach in description of higher-order modulation instability, multi-breather solutions, their degenerate versions and higher-order rogue waves of the nonlinear Schrödinger equation. For a system with infinitely many interacting instability modes, the band of the instability in this description is a hypercube, a multi-dimensional space of modulation frequencies. A large variety of special multi-breather and multi-rogue wave solutions of the nonlinear Schrödinger equation in this description corresponds to special points and lines within this hypercube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kawamura, K., et al.: State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling. Sci. Adv. 3, e1600446 (2017)

    Google Scholar 

  2. Alipour, M.J., Lashkari, A.: Sand instability under constant shear drained stress path. Int. J. Solid Struct. 150, 66–82 (2018)

    Google Scholar 

  3. Lashmore-Davies, C.N., McCarthy, D.R., Thyagaraja, A.: The nonlinear dynamics of the modulational instability of drift waves and the associated zonal flows. Phys. Plasma 8, 5121 (2001)

    MathSciNet  Google Scholar 

  4. Samuelson, P.A.: Scaling and dynamics of washboard roads. Econometrica 10, 1–25 (1942)

    Google Scholar 

  5. Wabnitz, S., Akhmediev, N.: Efficient modulation frequency doubling by induced modulation instability. Opt. Commun. 283, 1152 (2010)

    Google Scholar 

  6. Erkintalo, M., Hammani, K., Kibler, B., Finot, C., Akhmediev, N., Dudley, J.M., Genty, G.: Higher-order modulation instability in nonlinear fiber optics. Phys. Rev. Lett. 107, 253901 (2011)

    Google Scholar 

  7. Guo, D., Tian, S.-F., Zhang, T.-T., Li, J.: Modulation instability analysis and soliton solutions of an integrable coupled nonlinear Schrödinger system. Nonlinear Dyn. 94, 2749–2761 (2018)

    Google Scholar 

  8. Benjamin, T.B.: Instability of periodic wavetrains in nonlinear dispersive systems. Proc. R. Soc. Lond. A. 299, 59–76 (1967)

    Google Scholar 

  9. Bespalov, V.I., Talanov, V.I.: Filamentary structure of light beams in nonlinear liquids. ZhETF Pisma Redaktsiiu 3, 471 (1966)

    Google Scholar 

  10. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lon. Ser. B Biol. Sci. 237, 37–72 (1952)

    MathSciNet  MATH  Google Scholar 

  11. Zheng, Q., Jianwei, S.: Turing instability in a gene network with cross-diffusion. Nonlinear Dyn. 78, 1301–1310 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Bitbol, A.F., Taberlet, N., Morris, S.W., McElwaine, J.N.: Scaling and dynamics of washboard roads. Phys. Rev. E. 79, 061308 (2009)

    Google Scholar 

  13. Nguen, J.H.V., Luo, D., Hulet, R.G.: Formation of matter-wave soliton trains by modulational instability. Science 356, 422–426 (2017)

    Google Scholar 

  14. Song, N., Zhang, W., Yao, M.H.: Complex nonlinearities of rogue waves in generalized inhomogeneous higher-order nonlinear Schrödinger equation. Nonlinear Dyn. 82, 489–500 (2015)

    MATH  Google Scholar 

  15. Garrett, C., Gemmrich, J.: Rogue waves. Phys. Today 62, 62–63 (2009)

    Google Scholar 

  16. Onorato, M., Residori, S., Bortolozzo, U., Montina, A., Arecchi, F.T.: Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528, 47–89 (2013)

    MathSciNet  Google Scholar 

  17. Chen, S., Baronio, F., Soto-Crespo, J.M., Grelu, P., Mihalache, D.: Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems. J. Phys. A Math. Theor. 50, 463001 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Guo, S., Mei, L., He, Y., Li, Y.: Modulation instability and ion-acoustic rogue waves in a strongly coupled collisional plasma with nonthermal nonextensive electrons. Plasma Phys. Control. Fus. 58, 025014 (2016)

    Google Scholar 

  19. Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Google Scholar 

  20. Tsai, Y.Y., Tsai, J.Y., Lin, I.: Generation of acoustic rogue waves in dusty plasmas through three-dimensional particle focusing by distorted waveforms. Nat. Phys. 12, 573–577 (2016)

    Google Scholar 

  21. Hasegawa, A., Brinkman, W.F.: Tunable coherent IR and FIR sources utilizing modulational instability. IEEE J. Quantum Electron. 16, 694–697 (1980)

    Google Scholar 

  22. Akhmediev, N., Eleonsky, V.E., Kulagin, N.: Generation of periodic trains of picosecond pulses in an optical fiber: exact solutions. Sov. Phys. JETP 62, 894–899 (1985)

    Google Scholar 

  23. Akhmediev, N., Dudley, J.M., Solli, D.R., Turitsyn, S.K.: Recent progress in investigating optical rogue waves. J. Opt. 15, 060201 (2013)

    Google Scholar 

  24. Malomed, B.A., Mihalache, D.: Nonlinear waves in optical and matter-wave media: a topical survey of recent theoretical and experimental results. Rom. J. Phys. 64, 106 (2019)

    Google Scholar 

  25. Greer, E.J., Patrick, D.M., Wigley, P.G.J., Taylor, J.R.: Generation of 2 THz repetition rate pulse trains through induced modulational instability. Electron. Lett. 25, 1246–1248 (1989)

    Google Scholar 

  26. Agrawal, G.P.: Modulation instability induced by cross-phase modulation. Phys. Rev. Lett. 59, 880 (1987)

    Google Scholar 

  27. Dudley, J.M., Genty, G., Dias, F., Kibler, B., Akhmediev, N.: Modulation instability, Akhmediev breathers and continuous wave supercontinuum generation. Opt. Express 17, 21497–21508 (2009)

    Google Scholar 

  28. Mussot, A., Kudlinski, A.: 19.5 W CW-pumped supercontinuum source from 0.65 to 1.38 \(\upmu \)m. Electron. Lett. 45, 29–30 (2009)

    Google Scholar 

  29. Mussot, A., Kudlinski, A., Kolobov, M., Louvergneaux, E., Douay, M., Taki, M.: Observation of extreme temporal events in CW-pumped supercontinuum. Opt. Express 17, 17010–17015 (2009)

    Google Scholar 

  30. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054 (2007)

    Google Scholar 

  31. Akhmediev, N., Soto-Crespo, J.M., Devine, N.: Breather turbulence versus soliton turbulence: rogue waves, probability density functions, and spectral features. Phys. Rev. E 94, 022212 (2016)

    MathSciNet  Google Scholar 

  32. Benjamin, T.B., Feir, J.E.: The disintegration of wave trains on deep water Part 1. Theory. J. Fluid Mech. 27, 417–430 (1967)

    MATH  Google Scholar 

  33. Hasimoto, H., Ono, H.: Nonlinear modulation of gravity waves. J. Phys. Soc. Jpn. 33, 805–811 (1972)

    Google Scholar 

  34. Crabb, M., Akhmediev, N.: Two-breather solutions for the class I infinitely extended nonlinear Schrödinger equation and their special cases. Nonlinear Dyn. 98, 245–255 (2019)

    MATH  Google Scholar 

  35. Akhmediev, N., Korneev, V.I.: Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69, 1089–1093 (1986)

    MATH  Google Scholar 

  36. Akhmediev, N., Korneev, V.I., Mitskevich, N.V.: N-modulation signals in a single-mode optical waveguide under nonlinear conditions. J. Exp. Theor. Phys. 67, 89 (1988)

    Google Scholar 

  37. Trillo, S., Wabnitz, S.: Dynamics of the nonlinear modulational instability in optical fibers. Opt. Lett. 16, 986–988 (1991)

    Google Scholar 

  38. Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nat. Photonics 8, 755–764 (2014)

    Google Scholar 

  39. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Circular rogue wave clusters. Phys. Rev. E 84, 056611 (2011)

    MATH  Google Scholar 

  40. Bendahmane, A., Mussot, A., Szriftgiser, P., Zerkak, O., Genty, G., Dudley, J., Kudlinski, A.: Experimental dynamics of Akhmediev breathers in a dispersion varying optical fiber. Opt. Lett. 39, 4490–4493 (2014)

    Google Scholar 

  41. Mussot, A., Kudlinski, A., Droques, M., Szriftgiser, P., Akhmediev, N.: Fermi–Pasta–Ulam recurrence in nonlinear fiber optics: the role of reversible and irreversible losses. Phys. Rev. X. 4, 011054 (2014)

    Google Scholar 

  42. Van Simaeys, G., Emplit, P., Haelterman, M.: Experimental demonstration of the Fermi–Pasta–Ulam recurrence in a modulationally unstable optical wave. Phys. Rev. Lett. 87, 033902 (2001)

    Google Scholar 

  43. Akhmediev, N.: Deja vu in optics. Nature 413, 267–268 (2001)

    Google Scholar 

  44. Akhmediev, N., Ankiewicz, A.: Solitons: Nonlinear Pulses and Beams. Chapman & Hall, London (1997)

    MATH  Google Scholar 

  45. Akhmediev, N., Eleonskii, V.M., Kulagin, N.E.: Exact first-order solutions of the nonlinear Schrödinger equation. Theor. Math. Fiz. 72, 183–196 (1987). English translation in: Theor. Math. Phys. 72, 809

    Google Scholar 

  46. Akhmediev, N., Ankiewicz, A.: First-order exact solutions of the nonlinear Schrödinger equation in the normal-dispersion regime. Phys. Rev. A 47, 3213–3221 (1993)

    Google Scholar 

  47. Mihalache, D., Panoiu, N.C.: Analytic method for solving the nonlinear Schrödinger equation describing pulse propagation in dispersive optic fibres. J. Phys. A Math. Gen. 26, 2679–2697 (1993)

    MATH  Google Scholar 

  48. Gagnon, L.: Solitons on a continuous-wave background and collision between two dark pulses: some analytical results. J. Opt. Soc. Am. B 10, 469–474 (1993)

    Google Scholar 

  49. Mihalache, D., Lederer, F., Baboiu, D.M.: Two-parameter family of exact solutions of the nonlinear Schrödinger equation describing optical-soliton propagation. Phys. Rev. A 47, 3285–3290 (1993)

    Google Scholar 

  50. Peregrine, D.H.: Water waves nonlinear Schrödinger equations and their solutions. J Aust. Math. Soc. Ser. B 25, 16–43 (1983)

    MATH  Google Scholar 

  51. Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)

    MATH  Google Scholar 

  52. Shrira, V., Georjaev, V.: What makes the Peregrine soliton so special as a prototype of freak waves? J. Eng. Math. 67, 11–22 (2010)

    MathSciNet  MATH  Google Scholar 

  53. Akhmediev, N., Soto-Crespo, J.M., Ankiewicz, A.: Extreme waves that appear from nowhere: on the nature of rogue waves. Phys. Lett. A 373, 2137–2145 (2009)

    MathSciNet  MATH  Google Scholar 

  54. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits. Phys. Rev. E 85, 066601 (2012)

    Google Scholar 

  55. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions Hardback and CD-ROM. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  56. Chabchoub, A., Hoffmann, N.P., Onorato, M., Akhmediev, N.: Super rogue waves: observation of a higher-order breather in water waves. Phys. Rev. X 2, 011015 (2012)

    Google Scholar 

  57. Coxeter, H.S.M.: Regular Polytopes, 3rd edn, p. 123. Dover, New York (1973)

    Google Scholar 

Download references

Funding

Funding was provided by Australian Research Council (Grant No. DP150102057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonkeun Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdury, A., Akhmediev, N. & Chang, W. Concurrent instabilities causing multiple rogue waves in infinite-dimensional dynamical systems. Nonlinear Dyn 99, 2265–2275 (2020). https://doi.org/10.1007/s11071-019-05420-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05420-9

Keywords

Navigation