Skip to main content
Log in

Doubly periodic solutions and breathers of the Hirota equation: recurrence, cascading mechanism and spectral analysis

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The Hirota equation is an extension of the nonlinear Schrödinger equation by incorporating third-order dispersion. Doubly periodic solutions for the Hirota equation are established in terms of theta and elliptic functions. Cubic dispersion preserves numerical robustness, as slightly disturbed exact solutions as initial states still evolve to the analytical configurations. In contrast with the nonlinear Schrödinger case, the wavenumber of the envelope must satisfy an algebraic equation related to the magnitude of the quadratic / cubic terms and the period of the wave patterns. The long wave limits of these doubly periodic patterns will yield the widely studied Kuznetsov-Ma and Akhmediev breathers. A cascading mechanism for the Hirota equation is studied, which will elucidate the first formation of breather modes. Higher harmonics exponentially small initially will grow at a larger rate than the fundamental mode. Eventually the high frequency modes reach roughly the same magnitude at one moment in time (or spatial location), signifying the first occurrence of breather. Breathers then decay and modulation instability emerges again for sufficiently small amplitude. The cycle is repeated and constitutes a manifestation of the Fermi-Pasta-Ulam-Tsingou recurrence. These analytical doubly periodic solutions will permit the prediction of the period of recurrence. These results can be applied in hydrodynamic and optical contexts where third or higher-order dispersion is present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Craik, A.D.D.: Wave Interactions and Fluid Flows. Cambridge University Press, New York (1985)

    MATH  Google Scholar 

  2. Kivshar, Y.S., Agrawal, G.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, San Diego (2003)

    Google Scholar 

  3. Peregrine, D.H.: Water-Waves, Non-Linear Schrödinger-Equations and their solutions. J. Aust. Math. Soc. B 25, 16 (1983)

    MATH  Google Scholar 

  4. Onorato, M., Residori, S., Bortolozzo, U., Montina, A., Arecchi, F.T.: Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528, 47 (2013)

    MathSciNet  Google Scholar 

  5. Chen, S., Baronio, F., Soto-Crespo, J.M., Grelu, P., Mihalache, D.: Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems. J. Phys. A 50, 463001 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Conforti, M., Mussot, A., Kudlinski, A., Trillo, S., Akhmediev, N.: Doubly periodic solutions of the focusing nonlinear Schrödinger equation: Recurrence, period doubling, and amplification outside the conventional modulation-instability band. Phys. Rev. A 101, 023843 (2020)

    MathSciNet  Google Scholar 

  7. Chin, S.A., Ashour, O.A., Belić, M.R.: Anatomy of the Akhmediev breather: Cascading instability, first formation time, and Fermi-Pasta-Ulam recurrence. Phys. Rev. E 92, 063202 (2015)

    MathSciNet  Google Scholar 

  8. Campbell, D.K., Rosenau, P., Zaslavsky, M.: Introduction: The Fermi-Pasta-Ulam problem-The first fifty years. Chaos 15, 015101 (2005)

    Google Scholar 

  9. Kevrekidis, P.G.: Non-linear waves in lattices: Past, present, future. IMA J. Appl. Math. 76, 389 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Ford, J.: The Fermi-Pasta-Ulam problem: Paradox turns discovery. Phys. Rep. 213, 271 (1992)

    MathSciNet  Google Scholar 

  11. Gallavotti, G.: The Fermi-Pasta-Ulam Problem: a status report. Springer, New York (2008)

    MATH  Google Scholar 

  12. Flach, S., Ivanchenko, M.V., Kanakov, O.I.: q-Breathers and the Fermi-Pasta-Ulam Problem. Phys. Rev. Lett. 95, 064102 (2005)

    Google Scholar 

  13. Yuen, H.C., Ferguson, W.E.: Relationship between Benjamin-Feir instability and recurrence in the nonlinear Schrödinger equation. Phys. Fluids 21, 1275 (1978)

    Google Scholar 

  14. Naveau, C., Szriftgiser, P., Kudlinski, A., Conforti, M., Trillo, S., Mussot, A.: Experimental characterization of recurrences and separatrix crossing in modulational instability. Opt. Lett. 22, 5426 (2019)

    Google Scholar 

  15. Van Simaeys, G., Emplit, P., Haelterman, M.: Experimental study of the reversible behavior of modulational instability in optical fibers. J. Opt. Soc. Am. B 19, 477 (2002)

    Google Scholar 

  16. Akhmediev, N.N., Eleonskii, V.M., Kulagin, N.E.: Exact first-order solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 72, 809–818 (1987)

    MATH  Google Scholar 

  17. Akhmediev, N., Ankiewicz, A.: 1st-order exact-solutions of the nonlinear Schrödinger-equation in the normal-dispersion regime. Phys. Rev. A 47, 3213 (1993)

    Google Scholar 

  18. Mihalache, D., Lederer, F., Baboiu, D.M.: 2-Parameter family of exact-solutions of the nonlinear Schrödinger-equation describing optical-soliton propagation. Phys. Rev. A 47, 3285 (1993)

    Google Scholar 

  19. Chow, K.W.: A class of exact, periodic-solutions of nonlinear envelope equations. J. Math. Phys. 36, 4125 (1995)

    MathSciNet  MATH  Google Scholar 

  20. Chow, K.W.: A class of doubly periodic waves for nonlinear evolution equations. Wave Motion 35, 71 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Duval, P.: Elliptic Functions and Elliptic Curves. Cambridge University Press, Cambridge (1973)

    Google Scholar 

  22. Lawden, D.F.: Elliptic Functions and Applications. Springer, Berlin (1989)

    MATH  Google Scholar 

  23. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave-equation. J. Math. Phys. 14, 805 (1973)

    MathSciNet  MATH  Google Scholar 

  24. Mihalache, D., Truta, N., Crasovan, L.-C.: Painlevé analysis and bright solitary waves of the higher-order nonlinear Schrödinger equation containing third-order dispersion and self-steepening term. Phys. Rev. E 56, 1064 (1997)

    MathSciNet  Google Scholar 

  25. Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010)

    MathSciNet  Google Scholar 

  26. Li, C., He, J., Porsezian, K.: Rogue waves of the Hirota and the Maxwell-Bloch equations. Phys. Rev. E 87, 012913 (2013)

    Google Scholar 

  27. Wang, L., Yan, Z., Guo, B.: Numerical analysis of the Hirota equation: Modulational instability, breathers, rogue waves, and interactions. Chaos 30, 013114 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Li, B., Zhao, J., Liu, W.: Analysis of interaction between two solitons based on computerized symbolic computation. Optik 206, 164210 (2020)

    Google Scholar 

  29. Dai, C.-Q., Wang, Y.-Y.: Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals. Nonlinear Dyn. 102, 1733 (2020)

    Google Scholar 

  30. Wen, X., Feng, R., Lin, J., Liu, W., Chen, F., Yang, Q.: Distorted light bullet in a tapered graded-index waveguide with PT symmetric potentials. Optik 248, 168092 (2021)

    Google Scholar 

  31. Fang, Y., Wu, G.-Z., Wen, X.-K., Wang, Y.-Y., Dai, C.-Q.: Predicting certain vector optical solitons via the conservation-law deep-learning method. Opt. Laser Technol. 155, 108428 (2022)

    Google Scholar 

  32. Cao, Q.-H., Dai, C.-Q.: Symmetric and anti-symmetric solitons of the fractional second- and third-order nonlinear Schrödinger equation. Chin. Phys. Lett. 38, 090501 (2021)

    Google Scholar 

  33. Konno, K., Ito, H.: Nonlinear interactions between solitons in complex t-plane. I. J. Phys. Soc. Jpn. 56, 897 (1987)

    MathSciNet  Google Scholar 

  34. Liu, T.Y., Chiu, T.L., Clarkson, P.A., Chow, K.W.: A connection between the maximum displacements of rogue waves and the dynamics of poles in the complex plane. Chaos 27, 091103 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Devine, N., Ankiewicz, A., Genty, G., Dudley, J.M., Akhmediev, A.: Recurrence phase shift in Fermi–Pasta–Ulam nonlinear dynamics. Phys. Lett. A 375, 4158 (2011)

    MATH  Google Scholar 

  36. Kimmoun, O., Hsu, H.C., Branger, H., Li, M.S., Chen, Y.Y., Kharif, C., Onorato, M., Kelleher, E.J.R., Kibler, B., Akhmediev, N., Chabchoub, A.: Modulation instability and phase-shifted Fermi-Pasta-Ulam recurrence. Sci. Rep. 6, 28516 (2016)

    Google Scholar 

  37. Soto-Crespo, J., Devine, N., Akhmediev, N.: Adiabatic transformation of continuous waves into trains of pulses. Phys. Rev. A 96, 023825 (2017)

    Google Scholar 

  38. Yin, H.M., Pan, Q., Chow, K.W.: Four-wave mixing and coherently coupled Schrödinger equations: Cascading processes and Fermi–Pasta–Ulam–Tsingou recurrence. Chaos 31, 083117 (2021)

    Google Scholar 

  39. Yin, H.M., Chow, K.W.: Breathers, cascading instabilities and Fermi–Pasta–Ulam–Tsingou recurrence of the derivative nonlinear Schrödinger equation: effects of ‘self-steepening’ nonlinearity. Physica D 428, 133033 (2021)

    MATH  Google Scholar 

  40. Grinevich, P.G., Santini, P.M.: The linear and nonlinear instability of the Akhmediev breather. Nonlinearity 34, 8331 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Haragus, M., Pelinovsky, D.E.: Linear instability of breathers for the focusing nonlinear Schrödinger equation. J. Nonlinear Sci. 32, 66 (2022)

    MATH  Google Scholar 

  42. Chen, J., Pelinovsky, D.E., White, R.E.: Rogue waves on the double-periodic background in the focusing nonlinear Schrödinger equation. Phys. Rev. E 100, 052219 (2019)

    MathSciNet  Google Scholar 

  43. Eeltink, D., Armaroli, A., Luneau, C., Branger, H., Brunetti, M., Kasparian, J.: Separatrix crossing and symmetry breaking in NLSE-like systems due to forcing and damping. Nonlinear Dyn. 102, 2385 (2020)

    Google Scholar 

  44. Pelinovsky, D.E.: Instability of double-periodic waves in the nonlinear Schrödinger equation. Front. Phys. 9, 599146 (2021)

    Google Scholar 

  45. Chabchoub, A., Hoffmann, N., Tobisch, E., Waseda, T., Akhmediev, N.: Drifting breathers and Fermi-Pasta-Ulam paradox for water waves. Wave Motion 90, 168 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: New extended Kadomtsev-Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dyn. 104, 1581 (2021)

    Google Scholar 

  47. Duran, H., Xu, H.T., Kevrekidis, P.G., Vainchtein, A.: Unstable dynamics of solitary traveling waves in a lattice with long-range interactions. Wave Motion 108, 102836 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Partial financial support has been provided by the Research Grants Council General Research Fund Contracts HKU17200718 and HKU17204722.

Funding

Research Grants Council General Research Fund, HKU17204722, K. W. Chow, HKU17200718, K. W. Chow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Pan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Theta functions are defined by Fourier series with exponentially decaying coefficients. In mathematical analysis, the Jacobi elliptic functions, sn, cn, dn can be expressed as ratio of theta functions. In classical mathematical analysis, theta functions are usually expressed as Fourier series with a real parameter q (τ purely imaginary):

$$ \theta_{1} \left( {x,{\uptau }} \right) = 2\sum\limits_{n = 0}^{\infty } {\left( { - 1} \right)^{n} } q^{{\left( {n + {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \right)^{2} }} \sin \left( {2n + 1} \right)x $$
$$ = - \sum\limits_{m = - \infty }^{\infty } {\exp \left[ {{\uppi }i{\uptau }\left( {m + \frac{1}{2}} \right)^{2} + 2i\left( {m + \frac{1}{2}} \right)\left( {x + \frac{{\uppi }}{2}} \right)} \right]} , $$
(A1)
$$ \theta_{2} \left( {x,{\uptau }} \right) = 2\sum\limits_{n = 0}^{\infty } {q^{{\left( {n + {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \right)^{2} }} } \cos \left( {2n + 1} \right)x $$
$$ = \sum\limits_{m = - \infty }^{\infty } {\exp \left[ {{\uppi }i{\uptau }\left( {m + \frac{1}{2}} \right)^{2} + 2i\left( {m + \frac{1}{2}} \right)x} \right]} , $$
(A2)
$$ \theta_{3} \left( {x,{\uptau }} \right) = 1 + 2\sum\limits_{n = 1}^{\infty } {q^{{n^{2} }} } \cos 2nx $$
$$ = \sum\limits_{m = - \infty }^{\infty } {\exp \left( {{\uppi }i{\uptau }m^{2} + 2imx} \right)} , $$
(A3)
$$ \theta_{4} \left( {x,{\uptau }} \right) = 1 + 2\sum\limits_{n = 1}^{\infty } {\left( { - 1} \right)^{n} q^{{n^{2} }} } \cos 2nx $$
$$ = \sum\limits_{m = - \infty }^{\infty } {\exp \left[ {{\uppi }i{\uptau }m^{2} + 2im\left( {x + \frac{{\uppi }}{2}} \right)} \right]} , $$
(A4)
$$ 0 < q < 1, \, q = \exp \left( {{\uppi }i{\uptau }} \right), \, q = \exp \left( { - \frac{{{\uppi }K^{\prime}}}{K}} \right). $$
(A5)

K, K' are the complete elliptic integrals of the first kind with parameters k and (1 – k2)1/2. In terms of the patterns in the summations, there is an extra minus sign in front of the function θ1. In terms of basic mathematical properties, θ1 is odd while the other three are even. The zeros or roots of θ1, θ2, θ3, θ4, are located at square grids in the complex plane at Mπ + Nπτ, (M + 1/2)π + Nπτ, (M + 1/2)π + (N + 1/2)πτ, Mπ + (N + 1/2)πτ respectively, with M, N integers. We can readily show by direct calculations that θ1 and θ2, as well as θ3 and θ4, are related by a phase shift of π/2.


The Jacobi elliptic functions can be expressed as ratios of theta functions with ‘stretched’ arguments or variables as (for simplicity, the dependence on the parameter τ in Eqs. A1-A4 has been dropped in Eqs. A6, A7:

$$ \begin{gathered} {\text{sn}}\left( u \right) = \frac{{\theta_{3} \left( 0 \right)\theta_{1} \left( z \right)}}{{\theta_{2} \left( 0 \right)\theta_{4} \left( z \right)}},{\text{ cn}}\left( u \right) = \frac{{\theta_{4} \left( 0 \right)\theta_{2} \left( z \right)}}{{\theta_{2} \left( 0 \right)\theta_{4} \left( z \right)}}, \, \hfill \\ {\text{dn}}\left( u \right) = \frac{{\theta_{4} \left( 0 \right)\theta_{3} \left( z \right)}}{{\theta_{3} \left( 0 \right)\theta_{4} \left( z \right)}}, \hfill \\ \end{gathered} $$
(A6)
$$ z = \frac{u}{{\theta_{3}^{2} \left( 0 \right)}}, \, k = \frac{{\theta_{2}^{2} \left( 0 \right)}}{{\theta_{3}^{2} \left( 0 \right)}}, \, k^{\prime} = \frac{{\theta_{4}^{2} \left( 0 \right)}}{{\theta_{3}^{2} \left( 0 \right)}}, \, k^{2} + \left( {k^{\prime}} \right)^{2} = 1. $$
(A7)

Theta functions possess many properties which make them ideal candidates for handling bilinear forms of evolution equations.


Sum and difference identities: Theta functions possess a huge varieties of identities:

$$ \theta_{3} \left( {x + y} \right)\theta_{3} \left( {x - y} \right)\theta_{2}^{2} \left( 0 \right) = \theta_{4}^{2} \left( x \right)\theta_{1}^{2} \left( y \right) + \theta_{3}^{2} \left( x \right)\theta_{2}^{2} \left( y \right), $$
(A8)
$$ \theta_{4} \left( {x + y} \right)\theta_{4} \left( {x - y} \right)\theta_{2}^{2} \left( 0 \right) = \theta_{4}^{2} \left( x \right)\theta_{2}^{2} \left( y \right) + \theta_{3}^{2} \left( x \right)\theta_{1}^{2} \left( y \right). $$
(A9)

By differentiating Eq. A8 with respect to y twice and setting y = 0,

$$ \begin{gathered} D_{x}^{2} \theta_{3} \left( x \right) \cdot \theta_{3} \left( x \right) = \frac{{2\theta_{2}^{\prime \prime } \left( 0 \right)\theta_{3}^{2} \left( x \right)}}{{\theta_{2} \left( 0 \right)}} + 2\theta_{3}^{2} \left( 0 \right)\theta_{4}^{2} \left( 0 \right)\theta_{4}^{2} \left( x \right), \hfill \\ D_{x}^{2} \theta_{4} \left( x \right) \cdot \theta_{4} \left( x \right) = 2\theta_{3}^{2} \left( 0 \right)\theta_{4}^{2} \left( 0 \right)\theta_{3}^{2} \left( x \right) + \frac{{2\theta_{2}^{\prime \prime } \left( 0 \right)\theta_{4}^{2} \left( x \right)}}{{\theta_{2} \left( 0 \right)}}, \hfill \\ \end{gathered} $$

i.e., the bilinear derivatives (‘D’ operator, defined below Eq. 4d) of theta functions can be expressed back in terms of the theta functions themselves through such ‘sum’ and ‘difference’ identities Eqs. A8, A9. Similar principles apply to the computations of

$$ D_{x} \theta_{m} \cdot \theta_{n} , \, D_{x}^{2} \theta_{m} \cdot \theta_{n} , $$

where m, n are integers.


Derivatives at specified values – By Taylor expansion of these sum and difference formulas and comparing powers, we relate the derivatives of theta functions to the functions themselves [20, 22], e.g.,

$$ \frac{{\theta_{4}^{\prime \prime } \left( 0 \right)}}{{\theta_{4} \left( 0 \right)}} - \frac{{\theta_{3}^{\prime \prime } \left( 0 \right)}}{{\theta_{3} \left( 0 \right)}} = \theta_{2}^{4} \left( 0 \right), \, \frac{{\theta_{4}^{\prime \prime } \left( 0 \right)}}{{\theta_{4} \left( 0 \right)}} - \frac{{\theta_{2}^{\prime \prime } \left( 0 \right)}}{{\theta_{2} \left( 0 \right)}} = \theta_{3}^{4} \left( 0 \right), $$
$$ \frac{{\theta_{3}^{\prime \prime } \left( 0 \right)}}{{\theta_{3} \left( 0 \right)}} - \frac{{\theta_{2}^{\prime \prime } \left( 0 \right)}}{{\theta_{2} \left( 0 \right)}} = \theta_{4}^{4} \left( 0 \right). $$

By differentiation using elementary calculus, we can simplify bilinear derivatives of products of exponential functions and the auxiliary variables, e.g.,

$$ \begin{gathered} D_{x} \left[ {\exp \left( {imx} \right)g \cdot \exp \left( {inx} \right)f} \right] \hfill \\ = \left[ {D_{x} g \cdot f + i\left( {m - n} \right)g\;f} \right]\exp \left[ {i\left( {m + n} \right)x} \right], \hfill \\ \end{gathered} $$
$$ \begin{aligned} & D_{x}^{2} \left[ {\exp \left( {imx} \right)g \cdot \exp \left( {inx} \right)f} \right] \hfill \\& = \left[ {D_{x}^{2} g \cdot f + 2i\left( {m - n} \right)D_{x} g \cdot f - \left( {m - n} \right)^{2} g\;f} \right] \hfill \\& \quad \times \exp \left[ {i\left( {m + n} \right)x} \right]. \hfill \\ \end{aligned} $$

These formulas will be especially relevant in the present wave packet type calculations, as the carrier wave envelope is expressed as a complex exponential function multiplied by the auxiliary functions governing the actual packet structure (Eq. 4).

Appendix B


The parameters of analytical breather are as follows:

$$ {\upzeta } = {\upzeta }_{R} + i{\upzeta }_{I} = \sqrt {{\upgamma }_{1}^{2} + 4{\upgamma }_{1} {\upeta } + 4\left( {{\upeta }^{2} + {\upchi }^{2} } \right)}, $$
(B1)
$$ \begin{gathered} \Theta_{11} = {\upgamma }_{1} x + \left( { - {{\lambda \gamma }}_{1}^{2} + {{\sigma \gamma }}_{1}^{3} + 2{{\lambda \chi }}^{2} - 6{{\sigma \gamma }}_{1} {\upchi }^{2} } \right)t + {\upzeta }x \hfill \\ \quad \quad + {\upzeta }t\left[ { - {\uplambda }\left( {{\upgamma }_{1} - 2{\upeta }} \right) + {\upsigma }\left( {{\upgamma }_{1}^{2} - 2{\upgamma }_{1} {\upeta } + 4{\upeta }^{2} - 2{\upchi }^{2} } \right)} \right] \hfill \\ \end{gathered} ,$$
(B2)
$$\begin{aligned} & \Theta_{12} = - {\upgamma }_{1} x + \left( {{{\lambda \gamma }}_{1}^{2} - {{\sigma \gamma }}_{1}^{3} - 2{{\lambda \chi }}^{2} + 6{{\sigma \gamma }}_{1} {\upchi }^{2} } \right)t + {\upzeta }x \\ & + {\upzeta }t\left[ { - {\uplambda }\left( {{\upgamma }_{1} - 2{\upeta }} \right) + {\upsigma }\left( {{\upgamma }_{1}^{2} - 2{\upgamma }_{1} {\upeta } + 4{\upeta }^{2} - 2{\upchi }^{2} } \right)} \right], \end{aligned}$$
(B3)
$$ \Theta_{2} = {\upzeta }\left\{ {x - t\left[ {{\uplambda }\left( {{\upgamma }_{1} - 2{\upeta }} \right) - {\upsigma }\left( {{\upgamma }_{1}^{2} - 2{\upgamma }_{1} {\upeta } + 4{\upeta }^{2} - 2{\upchi }^{2} } \right)} \right]} \right\}. $$
(B4)

Based on Eq. B1, ζR and ζI can be determined by

$$ \begin{gathered} {\upzeta }_{R}^{2} - {\upzeta }_{I}^{2} = {\upgamma }_{1}^{2} - 4{\upeta }_{I}^{2} + 4{\upgamma }_{1} {\upeta }_{R} + 4{\upeta }_{R}^{2} + 4{\upchi }^{2} , \, \hfill \\ 2{\upzeta }_{R} {\upzeta }_{I} = 4{\upgamma }_{1} {\upeta }_{I} + 8{\upeta }_{I} {\upeta }_{R} . \hfill \\ \end{gathered} $$
(B5)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H.M., Pan, Q. & Chow, K.W. Doubly periodic solutions and breathers of the Hirota equation: recurrence, cascading mechanism and spectral analysis. Nonlinear Dyn 110, 3751–3768 (2022). https://doi.org/10.1007/s11071-022-07799-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07799-4

Keywords

Navigation