Skip to main content
Log in

Observer-based event-triggered control for semilinear time-fractional diffusion systems with distributed feedback

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with the observer-based distributed event-triggered feedback control for semilinear time-fractional diffusion systems under the Robin boundary conditions. To this end, an extended Luenberger-type observer is presented to solve the limitations caused by the impossible availability of full-state information that is needed for feedback control in practical applications due to the difficulties of measuring. With this, we propose the distributed output feedback event-triggered controllers via backstepping technique under which the considered systems admit Mittag–Leffler stability. It is shown that the given event-triggered control strategy could significantly reduce the amount of transmitted control inputs while guaranteeing the desired system performance with the Zeno phenomenon being excluded. A numerical illustration is finally presented to illustrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lunze, J., Lehmann, D.: A state-feedback approach to event-based control. Automatica 46(1), 211–215 (2010)

    Article  MathSciNet  Google Scholar 

  2. Yan, S., Shen, M., Zhang, G.: Extended event-driven observer-based output control of networked control systems. Nonlinear Dyn. 86(3), 1639–1648 (2016)

    Article  MathSciNet  Google Scholar 

  3. Mu, C., Wang, D., Sun, C., Zong, Q.: Robust adaptive critic control design with network-based event-triggered formulation. Nonlinear Dyn. 90(3), 2023–2035 (2017)

    Article  MathSciNet  Google Scholar 

  4. Losada, M.G.: Contributions to Networked and Event-Triggered Control of Linear Systems. Springer, Berlin (2016)

    MATH  Google Scholar 

  5. Dong, T., Wang, A., Zhu, H., Liao, X.: Event-triggered synchronization for reaction–diffusion complex networks via random sampling. Phys. A 495, 454–462 (2018)

    Article  MathSciNet  Google Scholar 

  6. Selivanov, A., Fridman, E.: Distributed event-triggered control of diffusion semilinear PDEs. Automatica 68, 344–351 (2016)

    Article  MathSciNet  Google Scholar 

  7. Wang, J.W.: Observer-based boundary control of semi-linear parabolic PDEs with non-collocated distributed event-triggered observation. J. Frankl. Inst. (2018). https://doi.org/10.1016/j.jfranklin.2018.05.052

    Article  Google Scholar 

  8. Espitia, N., Girard, A., Marchand, N., Prieur, C.: Event-based control of linear hyperbolic systems of conservation laws. Automatica 70, 275–287 (2016)

    Article  MathSciNet  Google Scholar 

  9. Espitia, N., Girard, A., Marchand, N., Prieur, C.: Event-based boundary control of a linear \(2 \times 2\) Hyperbolic system via backstepping approachs. IEEE Trans. Autom. Control 63(8), 2686–2693 (2018)

    Article  MathSciNet  Google Scholar 

  10. Jiang, Z., Cui, B., Wu, W., Zhuang, B.: Event-driven observer-based control for distributed parameter systems using mobile sensor and actuator. Comput. Math. Appl. 72(12), 2854–2864 (2016)

    Article  MathSciNet  Google Scholar 

  11. Wang, J., Chen, M., Shen, H.: Event-triggered dissipative filtering for networked semi-Markov jump systems and its applications in a mass-spring system model. Nonlinear Dyn. 87(4), 2741–2753 (2017)

    Article  MathSciNet  Google Scholar 

  12. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  13. Ge, F., Chen, Y., Kou, C.: Regional Analysis of Time-Fractional Diffusion Processes. Springer, Berlin (2018)

    Book  Google Scholar 

  14. Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29(1–4), 129–143 (2002)

    Article  MathSciNet  Google Scholar 

  15. Liang, J., Chen, Y., Fullmer, R.: Boundary stabilization and disturbance rejection for time fractional order diffusion-wave equations. Nonlinear Dyn. 38(1–4), 339–354 (2004)

    Article  MathSciNet  Google Scholar 

  16. Uchaikin, V., Sibatov, R.: Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems. World Science, Singapore (2013)

    Book  Google Scholar 

  17. Meerschaert, M.M., Mortensen, J., Wheatcraft, S.W.: Fractional vector calculus for fractional advection–dispersion. Phys. A Stat. Mech. Appl. 367, 181–190 (2006)

    Article  Google Scholar 

  18. Zhang, X., Han, Q., Zhang, B.: An overview and deep investigation on sampled-data-based event-triggered control and filtering for networked systems. IEEE Trans. Ind. Inform. 13(1), 4–16 (2017)

    Article  MathSciNet  Google Scholar 

  19. Ge, F., Chen, Y., Kou, C.: Boundary feedback stabilisation for the time fractional-order anomalous diffusion system. IET Control Theory Appl. 10(11), 1250–1257 (2016)

    Article  MathSciNet  Google Scholar 

  20. Zhou, H., Guo, B.: Boundary feedback stabilization for an unstable time fractional reaction diffusion equation. SIAM J. Control Optim. 56, 75–101 (2018)

    Article  MathSciNet  Google Scholar 

  21. Ge, F., Chen, Y.: Event-triggered boundary feedback control for networked reaction–subdiffusion processes with input uncertainties. Inf. Sci. 476, 239–255 (2019)

    Article  MathSciNet  Google Scholar 

  22. Podlubny, I.: Fractional Differential Equations, vol. 198. Academic press, Cambridge (1999)

    MATH  Google Scholar 

  23. Meurer, T.: Flatness-based trajectory planning for diffusion–reaction systems in a parallelepipedon—a spectral approach. Automatica 47(5), 935–949 (2011)

    Article  MathSciNet  Google Scholar 

  24. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19(9), 2951–2957 (2014)

    Article  MathSciNet  Google Scholar 

  25. Fujishiro, K., Yamamoto, M.: Approximate controllability for fractional diffusion equations by interior control. Appl. Anal. 93(9), 1793–1810 (2014)

    Article  MathSciNet  Google Scholar 

  26. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    Article  MathSciNet  Google Scholar 

  27. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014)

    Book  Google Scholar 

  28. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007)

    Article  MathSciNet  Google Scholar 

  29. Li, C., Zeng, F.: Numerical Methods for Fractional Calculus, vol. 24. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  30. Smyshlyaev, A., Krstić, M.: Closed-form boundary state feedbacks for a class of 1-D partial integro-differential equations. IEEE Trans. Autom. Control 49(12), 2185–2202 (2004)

    Article  MathSciNet  Google Scholar 

  31. Fridman, E., Blighovsky, A.: Robust sampled-data control of a class of semilinear parabolic systems. Automatica 48(5), 826–836 (2012)

    Article  MathSciNet  Google Scholar 

  32. Fridman, E.: Sampled-data distributed \({H}_\infty \) control of transport reaction systems. SIAM J. Control Optim. 51(2), 1500–1527 (2013)

    Article  MathSciNet  Google Scholar 

  33. Karafyllis, I., Krstic, M.: Sampled-data boundary feedback control of 1-D parabolic PDEs. Automatica 87, 226–237 (2018)

    Article  MathSciNet  Google Scholar 

  34. Davo, M.A., Bresch-Pietri, D., Prieur, C., Di Meglio, F.: Stability analysis of a 2\(\times \) 2 linear hyperbolic system with a sampled-data controller via backstepping method and looped-functionals. IEEE Trans. Autom. Control 64(4), 1718–1725 (2018)

    Article  MathSciNet  Google Scholar 

  35. Ge, F., Meurer, T., Chen, Y.: Mittag-Leffler convergent backstepping observers for coupled semilinear subdiffusion systems with spatially varying parameters. Syst. Control Lett. 122, 86–92 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) under Grants 61907039 and 41801365, the Hubei NSFC under Grant 2019CFB255 and the Fundamental Research Funds for the Central Universities, China University of Geosciences, Wuhan, under grant CUGGC05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fudong Ge.

Ethics declarations

Conflict of interest

It is worth noting that the brief version of this paper without any detailed proofs has been submitted to NODYCON 2019, the First International Dynamics Conference in Rome at February 17–20, 2019. In other words, this paper can be regarded as the substantially expanded version of the previous conference paper. In addition to this, the authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Proof of Proposition 1

Proof

Differentiating both sides of (11), we get that

$$\begin{aligned}&\omega _{xx} (x,t)\\&\quad = e_{xx}(x,t)-\frac{\mathrm{d}}{\mathrm{d}x}g(x,x) e(x,t)-g(x,x) e_x(x,t)\\&\qquad -g_x(x,x) e(x,t) -\int _0^x{g_{xx}(x,\varsigma ) e(\varsigma ,t)}\mathrm{d}\varsigma \end{aligned}$$

and

$$\begin{aligned}&{}^C_0D_t^\alpha \omega (x,t) \\&\quad ={}^C_0D_t^\alpha e(x,t)- \int _0^x{g(x,\varsigma ){}^C_0D_t^\alpha e(\varsigma ,t)}\mathrm{d}\varsigma \\&\quad ={}^C_0D_t^\alpha e(x,t)- \int _0^x{g_{\varsigma \varsigma }(x,\varsigma )e(\varsigma ,t)}\mathrm{d}\varsigma \\&\qquad -\,g(x,x)e_x(x,t)\\&\qquad +\,g(x,0)e_x(0,t) +g_\varsigma (x,x)e(x,t)\\&\qquad -\,g_\varsigma (x,0)e(0,t)\\&\qquad -\int _0^x{g(x,\varsigma )f(\varsigma ,t,e(\varsigma ,t)+{\hat{y}}(\varsigma ,t))}\mathrm{d}\varsigma \\&\qquad + \int _0^x{g(x,\varsigma )f(\varsigma ,t,{\hat{y}}(\varsigma ,t))}\mathrm{d}\varsigma \\&\qquad + \int _0^x{g(x,\varsigma )k_1(\varsigma )}\mathrm{d}\varsigma e(0,t). \end{aligned}$$

These, together with \(e_x(0,t)=\frac{p_{2}- k_2}{p_{1}} e(0,t)\), \(e(0,t)=\omega (0,t)\) and \(\frac{\mathrm{d}}{\mathrm{d}x}G(x,x) =G_x(x,x) +G_\varsigma (x,x)\), yield that

$$\begin{aligned} 0= & {} {}^C_0D^{\alpha }_{t}\omega (x,t)- \omega _{xx}(x,t)+\mu \omega (x,t)-\varphi \nonumber \\= & {} f(x,t,e(x,t)+{\hat{y}}(x,t))-f({\hat{y}}(x,t),x,t)\nonumber \\&-\int _0^x{g(x,\varsigma )f(\varsigma ,t,e(\varsigma ,t)+{\hat{y}}(\varsigma ,t))}\mathrm{d}\varsigma \nonumber \\&+ \int _0^x{g(x,\varsigma )f(\varsigma ,t,{\hat{y}}(\varsigma ,t))}\mathrm{d}\varsigma -\varphi \nonumber \\&+\left( 2\frac{\mathrm{d}}{\mathrm{d}x}g(x,x) +\mu \right) e(x,t) \nonumber \\&+\int _0^x{\left\{ g_{xx}(x,\varsigma )-g_{\varsigma \varsigma }(x,\varsigma ) -\mu g(x,\varsigma )\right\} e(\varsigma ,t)}\mathrm{d}\varsigma \nonumber \\&+\left\{ \begin{array}{l}\int _0^x{g(x,\varsigma )k_1(\varsigma )}\mathrm{d}\varsigma -g_\varsigma (x,0)-k_1(x)\\ +g(x,0)\frac{p_{2}- k_2}{p_1}\end{array}\right\} e(0,t).\nonumber \\ \end{aligned}$$
(69)

Since this equation has to hold for all (xt) \(\in (0,l)\times (0,\infty )\), if g satisfies

$$\begin{aligned} \left\{ \begin{array}{l} g_{xx}(x,\varsigma )-g_{\varsigma \varsigma }(x,\varsigma )=\mu g(x,\varsigma ),~0<\varsigma< x< l,\\ 2\frac{\mathrm{d}}{\mathrm{d}x}g(x,x)=-\mu ,~0< x<l, \end{array}\right. \nonumber \\ \end{aligned}$$
(70)

then the observer gain \(k_2\) satisfying (13) can be determined according to the boundary conditions at \(x=0\), and besides, \(k_1(x)\) can be chosen as in Eq.(12). Here \(r_1\ne 0 \) is imposed in consistent with \(p_1\ne 0\). In addition, the boundary conditions at \(x=l\) yield that

$$\begin{aligned} \begin{array}{l} \left\{ \begin{array}{l} g(L,\varsigma )=0, \text{ if } q_1,s_1=0;\\ \left\{ \begin{array}{l} s_1 g_x(l,\varsigma )+s_2 g(l,\varsigma )=0,\\ g(l,l)=\frac{q_2}{q_1}-\frac{s_2}{s_1}, \end{array}\right. \text{ if } q_1,s_1\ne 0. \end{array} \right. \end{array} \end{aligned}$$
(71)

With these preliminaries, by [30, 35], we see the following results.

Lemma 4

For the unique solution of the kernel function \(g(x,\varsigma )\) governed by (14), the following conclusions hold true:

  1. 1.

    If \(q_1,s_1=0\), we have

    $$\begin{aligned}&g(x,\varsigma )\nonumber \\&\quad =-\mu (l-x) \frac{I_1\left( \sqrt{\mu (2l-x-\varsigma )(x-\varsigma ) }\right) }{\sqrt{\mu (2l-x-\varsigma )(x-\varsigma ) }},\nonumber \\ \end{aligned}$$
    (72)

    where \(I_1\) is the modified first-order Bessel function.

  2. 2.

    If \(q_1,s_1\ne 0\), the methods of successive approximation lead to the solution

    $$\begin{aligned}&g(x,\varsigma )\nonumber \\&\quad =-\mu (l-\varsigma ) \frac{I_1\left( \sqrt{\mu (2l-x-\varsigma )(x-\varsigma ) }\right) }{\sqrt{\mu (2l-x-\varsigma )(x-\varsigma ) }}\nonumber \\&\qquad -\frac{c^*\mu }{\sqrt{\mu +{c^*}^2}}\int _0^{x-\varsigma }\mathrm{e}^{\frac{c^*s}{2}}\sinh \left( \frac{\sqrt{\mu +{c^*}^2}}{2}s\right) \nonumber \\&\qquad \times I_0\left( \sqrt{\mu (2l-x-\varsigma ) (x-\varsigma -s)}\right) \mathrm{d}s,\nonumber \\ \end{aligned}$$
    (73)

    where \(c^*=\frac{s_2}{s_1}\) and \(I_0\) is the modified zero-order Bessel function.

Moreover, we have

$$\begin{aligned} \left| g(x,\varsigma )\right| \leqslant N \mathrm{e}^{2 N x}\leqslant N \mathrm{e}^{2 N l}\triangleq C_g \end{aligned}$$
(74)

for all \(0\leqslant \xi \leqslant x\leqslant l,\) where

$$\begin{aligned} N= \left\{ \begin{array}{l}\mu , \text{ if } s_{1}=0,\\ \mu (1+\mathrm{e}^{-s_{2}/s_{1}}), \text{ if } s_{1}\ne 0.\end{array}\right. \end{aligned}$$
(75)

Define the operator \({\mathcal {E}}: L^2(0,l)\rightarrow L^2(0,l)\) as

$$\begin{aligned} \omega (x,t)= & {} ({\mathcal {E}}e)(x,t) \triangleq e(x,t)\nonumber \\&-\int _0^x{g(x,\varsigma ) e(\varsigma ,t)}\mathrm{d}\varsigma , \end{aligned}$$
(76)

From Eq. (74), we get that \({\mathcal {E}}\) is bounded.

Furthermore, set \(\varphi (x,t)=\int _0^x{g(x,\varsigma )e(\varsigma ,t)}\mathrm{d}\varsigma \). One has \(\omega (x,t)= e(x,t)-\varphi (x,t)\) and

$$\begin{aligned} \varphi (x,t)= & {} \int _0^x{g(x,\varsigma ) \omega (\varsigma ,t)}\mathrm{d}\varsigma \nonumber \\&+\int _0^x{g(x,\varsigma )\varphi (\varsigma ,t)}\mathrm{d}\varsigma . \end{aligned}$$
(77)

Based on this, let \(\varphi _0(x,t)=\int _0^x{g(x,\varsigma ) \omega (\varsigma ,t)}\mathrm{d}\varsigma \) and \( \varphi _n(x,t)=\int _0^x{g(x,\varsigma ) \varphi _{n-1}(\varsigma ,t)}\mathrm{d}\varsigma .\) It yields that

$$\begin{aligned} |\varphi _0(x,t)|\leqslant & {} C_g\sqrt{l}\Vert \omega (\cdot ,t)\Vert ,\\ |\varphi _1(x,t)|\leqslant & {} C_g^2\sqrt{l}\Vert \omega (\cdot ,t)\Vert x,\\ |\varphi _2(x,t)|\leqslant & {} \frac{C_g^3\sqrt{l}\Vert \omega (\cdot ,t)\Vert }{2!}x^2,\\ |\varphi _n(x,t)|\leqslant & {} \frac{C_g^{n+1}\sqrt{l} \Vert \omega (\cdot ,t)\Vert }{n!}x^n. \end{aligned}$$

Therefore, the series \( \varphi (x,t)=\sum \nolimits _{n=0}^\infty \varphi _{n}(x,t) \) is absolutely and uniformly convergent. Moreover, since this series represents the solution of Eq. (77), the inverse of operator \({\mathcal {E}},\) denoted by \({\mathcal {E}}^{-1} \), is also a bounded operator. Then, we get that the error dynamic (10) and the target system (15) are equivalent and the proof is finished. \(\square \)

Proof of Proposition 2

Proof

Similar to the proof of Proposition 1, differentiating the transformation (19), we see

$$\begin{aligned} 0= & {} {}^C_0D^{\alpha }_{t}\rho (x,t)-\rho _{xx}(x,t)+\sigma \rho (x,t)\\&-H(x)e(0,t) -\psi \\= & {} \left[ \sigma +2\frac{\mathrm{d}}{\mathrm{d}x}h(x,x)\right] {\hat{y}}(x,t) \\&+\int _0^x{ {\hat{y}}(\varsigma ,t)\left\{ h_{xx}(x,\varsigma )-h_{\varsigma \varsigma }(x,\varsigma ) -\sigma h(x,\varsigma )\right\} }\mathrm{d}\varsigma \\&+\left( h(x,0)\frac{p_2}{p_1} -h_\varsigma (x,0)\right) {\hat{y}}(0,t)\\&+\left( k_1(x)-\int _0^x{h(x,\varsigma )k_1(\varsigma )}\mathrm{d}\varsigma +\frac{k_2}{p_1}-H(x) \right) e(0,t)\\&+f({\hat{y}}(x,t),x,t)-\int _0^x{h(x,\varsigma ) f({\hat{y}}(\varsigma ,t),\varsigma ,t)}\mathrm{d}\varsigma -\psi \\&+Bu(t_k)-\int _0^x{h(x,\varsigma ) Bu(t_k)}\mathrm{d}\varsigma . \end{aligned}$$

Then, system (17) can be converted into (23).

Lemma 5

The solution to the system (22) is

$$\begin{aligned}&h(x,\varsigma )\nonumber \\&\quad =\frac{{\hat{c}} \sigma }{\sqrt{\sigma +{{\hat{c}}}^2}} \int _0^{x-\varsigma }{\mathrm{e}^{-\frac{{\hat{c}} \tau }{2}} I_0\left( \sqrt{\sigma (x+\varsigma )(x-\varsigma -\tau ) }\right) } \nonumber \\&\qquad +\sinh \left( \frac{\sqrt{\sigma +{{\hat{c}}}^2}}{2} \tau \right) \mathrm{d}\tau \nonumber \\&\qquad -\,\sigma x \frac{I_1\left( \sqrt{\sigma \left( x^2-\varsigma ^2\right) }\right) }{\sqrt{\sigma \left( x^2-\varsigma ^2\right) }}, \end{aligned}$$
(78)

where \({\hat{c}} =p_1^{-1}p_2. \)

Similar to the proof of Proposition 1, let operator \({\mathcal {E}}_2: L^2(0,l)\rightarrow L^2(0,l)\) be

$$\begin{aligned} \rho (x,t)= & {} ({\mathcal {E}}_2 {\hat{y}})(x,\cdot )\triangleq {\hat{y}} (x,t)\nonumber \\&\quad -\int _0^x{h(x,\varsigma ){\hat{y}}(\varsigma ,t)}\mathrm{d}\varsigma . \end{aligned}$$
(79)

Set

$$\begin{aligned} C_h=\max \limits _{0\leqslant \varsigma \leqslant x\leqslant l} \left| h(x,\varsigma )\right| , \end{aligned}$$
(80)

it is not difficult to deduce that both \({\mathcal {E}}_2\) and its inverse are bounded. Then, the transformation (19) and \(h(0,0)=0\) yield that \(\rho (0,t)={\hat{y}} (0,t)\) and \(\rho _x(0,t)={\hat{y}}_x (0,t)\). These lead to the BCs of system (23). Therefore, the considered observer system (9) and the target system (23) are equivalent. The proof of Proposition 2 is finished. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, F., Chen, Y. Observer-based event-triggered control for semilinear time-fractional diffusion systems with distributed feedback. Nonlinear Dyn 99, 1089–1101 (2020). https://doi.org/10.1007/s11071-019-05338-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05338-2

Keywords

Navigation