Skip to main content
Log in

Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work investigates nonlinear harmonic resonance behaviors of graded graphene-reinforced composite spinning thin cylindrical shells subjected to a thermal load and an external excitation. The volume fraction of graphene platelets varies continuously in the shell’s thickness direction, which generates position-dependent useful material properties. Natural frequencies of shell traveling waves are derived by considering influences of the initial hoop tension, centrifugal and Coriolis forces, thermal expansion deformation, and thermal conductivity. A new Airy stress function is introduced. Harmonic resonance behaviors and their stable solutions for the spinning cylindrical shell are analyzed based on an equation of motion which is established by adopting Donnell’s nonlinear shell theory. The necessary and sufficient conditions for the existence of the subharmonic resonance of the spinning composite cylindrical shell are given. Besides the shell’s intrinsic structural damping, the Coriolis effect due to the spinning motion has a contribution to the damping terms of the system as well. Comparisons between the present analytical results and those in other papers are made to validate the existing solutions. Influences of main factors on vibration characteristics, primary resonance, and subharmonic resonance behaviors of the novel composite cylindrical shell are discussed. Furthermore, the mechanism of how the spinning motion affects the amplitude–frequency curves of harmonic resonances of the cylindrical shell is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.A., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Google Scholar 

  2. Huang, X., Qi, X.Y., Boey, F., Zhang, H.: Graphene-based composites. Chem. Soc. Rev. 41(2), 666–686 (2012)

    Google Scholar 

  3. Villar Rodil, S., Paredes, J.I., Martínez Alonso, A., Tascón, J.M.: Preparation of graphene dispersions and graphene-polymer composites in organic media. J. Mater. Chem. 19(22), 3591–3593 (2009)

    Google Scholar 

  4. Kim, H., Abdala, A.A., Macosko, C.W.: Graphene/polymer nanocomposites. Macromolecules 43(16), 6515–6530 (2010)

    Google Scholar 

  5. Young, R.J., Kinloch, I.A., Gong, L., Novoselov, K.S.: The mechanics of graphene nanocomposites: a review. Compos. Sci. Technol. 72(12), 1459–1476 (2012)

    Google Scholar 

  6. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H.H., Yu, Z.Z., Koratkar, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12), 3884–3890 (2009)

    Google Scholar 

  7. Parashar, A., Mertiny, P.: Representative volume element to estimate buckling behavior of graphene/polymer nanocomposite. Nanoscale Res. Lett. 7(1), 515 (2012)

    Google Scholar 

  8. Feng, C., Kitipornchai, S., Yang, J.: Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Compos. Pt. B Eng. 110, 132–140 (2017)

    Google Scholar 

  9. Yang, B., Kitipornchai, S., Yang, Y.F., Yang, J.: 3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates. Appl. Math. Model. 49, 69–86 (2017)

    MathSciNet  Google Scholar 

  10. Dong, Y.H., He, L.W., Wang, L., Li, Y.H., Yang, J.: Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: an analytical study. Aerosp. Sci. Technol. 82, 466–478 (2018)

    Google Scholar 

  11. Yang, J., Wu, H.L., Kitipornchai, S.: Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos. Struct. 161, 111–118 (2017)

    Google Scholar 

  12. Liu, D.Y., Kitipornchai, S., Chen, W.Q., Yang, J.: Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell. Compos. Struct. 189, 560–569 (2018)

    Google Scholar 

  13. Chen, D., Yang, J., Kitipornchai, S.: Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos. Sci. Technol. 142, 235–245 (2017)

    Google Scholar 

  14. Dong, Y.H., Li, Y.H., Chen, D., Yang, J.: Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Compos. Pt. B Eng. 145, 1–13 (2018)

    Google Scholar 

  15. Dong, Y.H., Zhu, B., Wang, Y., Li, Y.H., Yang, J.: Nonlinear free vibration of graded graphene reinforced cylindrical shells: effects of spinning motion and axial load. J. Sound Vib. 437, 79–96 (2018)

    Google Scholar 

  16. Song, M.T., Kitipornchai, S., Yang, J.: Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 159, 579–588 (2017)

    Google Scholar 

  17. Gao, K., Gao, W., Chen, D., Yang, J.: Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation. Compos. Struct. 204, 831–846 (2018)

    Google Scholar 

  18. Amabili, M.: Nonlinear vibrations of laminated circular cylindrical shells: comparison of different shell theories. Compos. Struct. 94(1), 207–220 (2011)

    Google Scholar 

  19. Pellicano, F.: Vibrations of circular cylindrical shells: theory and experiments. J. Sound Vib. 303(1–2), 154–170 (2007)

    Google Scholar 

  20. Zhao, X., Liew, K.M.: Geometrically nonlinear analysis of functionally graded shells. Int. J. Mech. Sci. 51(2), 131–144 (2009)

    MATH  Google Scholar 

  21. Gao, K., Gao, W., Wu, D., Song, C.M.: Nonlinear dynamic stability of the orthotropic functionally graded cylindrical shell surrounded by Winkler–Pasternak elastic foundation subjected to a linearly increasing load. J. Sound Vib. 415, 147–168 (2018)

    Google Scholar 

  22. Huang, S.C., Soedel, W.: Effects of Coriolis acceleration on the forced vibration of rotating cylindrical shells. ASME J. Appl. Mech. 55, 231 (1988)

    Google Scholar 

  23. Rand, O., Stavsky, Y.: Free vibrations of spinning composite cylindrical shells. Int. J. Solids Struct. 28(7), 831–843 (1991)

    Google Scholar 

  24. Wang, Y.Q.: Nonlinear vibration of a rotating laminated composite circular cylindrical shell: traveling wave vibration. Nonlinear Dyn 77(4), 1693–1707 (2014)

    MathSciNet  Google Scholar 

  25. Vogl, G.W., Nayfeh, A.H.: Primary resonance excitation of electrically actuated clamped circular plates. Nonlinear Dyn 47(1–3), 181–192 (2007)

    MATH  Google Scholar 

  26. Hu, H.Y., Dowell, E.H., Virgin, L.N.: Resonances of a harmonically forced Duffing oscillator with time delay state feedback. Nonlinear Dyn. 15(4), 311–327 (1998)

    MATH  Google Scholar 

  27. Sheng, G.G., Wang, X.: The non-linear vibrations of rotating functionally graded cylindrical shells. Nonlinear Dyn. 87(2), 1095–1109 (2017)

    Google Scholar 

  28. Wang, Y.Z., Li, F.M.: Nonlinear primary resonance of nano beam with axial initial load by nonlocal continuum theory. Int. J. Non Linear Mech. 61, 74–79 (2014)

    Google Scholar 

  29. Li, F.M., Yao, G.: 1/3 Subharmonic resonance of a nonlinear composite laminated cylindrical shell in subsonic air flow. Compos. Struct. 100, 249–256 (2013)

    Google Scholar 

  30. Gao, K., Gao, W., Wu, B.H., Wu, D., Song, C.M.: Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales. Thin-Walled Struct. 125, 281–293 (2018)

    Google Scholar 

  31. Li, X.Q., Song, M.T., Yang, J., Kitipornchai, S.: Primary and secondary resonances of functionally graded graphene platelet-reinforced nanocomposite beams. Nonlinear Dyn. 95(3), 1807–1826 (2019)

    Google Scholar 

  32. Dong, Y.H., Li, Y.H.: A unified nonlinear analytical solution of bending, buckling and vibration for the temperature-dependent FG rectangular plates subjected to thermal load. Compos. Struct. 159, 689–701 (2017)

    Google Scholar 

  33. Li, X.Y., Dong, Y.H., Liu, C., Liu, Y., Wang, C.J., Shi, T.F.: Axisymmetric thermo-magneto-electro-elastic field in a heterogeneous circular plate subjected to a uniform thermal load. Int. J. Mech. Sci. 88, 71–81 (2014)

    Google Scholar 

  34. Dong, Y.H., Zhu, B., Wang, Y., He, L.W., Li, Y.H., Yang, J.: Analytical prediction of the impact response of graphene reinforced spinning cylindrical shells under axial and thermal loads. Appl. Math. Model. 71, 331–348 (2019)

    MathSciNet  Google Scholar 

  35. Liu, Y.Q., Chu, F.L.: Nonlinear vibrations of rotating thin circular cylindrical shell. Nonlinear Dyn. 67(2), 1467–1479 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Li, X., Du, C.C., Li, Y.H.: Parametric resonance of a FG cylindrical thin shell with periodic rotating angular speeds in thermal environment. Appl. Math. Model. 59, 393–409 (2018)

    MathSciNet  Google Scholar 

  37. Zheng, Q.S., Du, D.X.: An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution. J. Mech. Phys. Solids 49(11), 2765–2788 (2001)

    MATH  Google Scholar 

  38. Chu, K., Jia, C.C., Li, W.S.: Effective thermal conductivity of graphene-based composites. Appl. Phys. Lett. 101(12), 121916 (2012)

    Google Scholar 

  39. Li, Y.H., Dong, Y.H., Qin, Y., Lv, H.W.: Nonlinear forced vibration and stability of an axially moving viscoelastic sandwich beam. Int. J. Mech. Sci. 138, 131–145 (2018)

    Google Scholar 

  40. Zhu, B., Dong, Y.H., Li, Y.H.: Nonlinear dynamics of a viscoelastic sandwich beam with parametric excitations and internal resonance. Nonlinear Dyn. 94(4), 2575–2612 (2018)

    Google Scholar 

  41. Shivamoggi, B.K.: Method of multiple scales. In: Perturbation Methods for Differential Equations, pp. 219–317. Springer (2003)

  42. Yang, B., Yang, J., Kitipornchai, S.: Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity. Meccanica 52(10), 2275–2292 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Li, X., Du, C.C., Li, Y.H.: Parametric instability of a functionally graded cylindrical thin shell subjected to both axial disturbance and thermal environment. Thin-Walled Struct. 123, 25–35 (2018)

    Google Scholar 

  44. Liew, K.M., Ng, T.Y., Zhao, X., Reddy, J.N.: Harmonic reproducing kernel particle method for free vibration analysis of rotating cylindrical shells. Comput. Meth. Appl. Mech. Eng. 191(37–38), 4141–4157 (2002)

    MATH  Google Scholar 

Download references

Acknowledgements

This research was funded by National Natural Science Foundation of China (Grant Nos. 11872319, 11672250) and Australian Research Council (DP160101978).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Expressions of the differential operators in Eq. (21) are given as

$$\begin{aligned} \begin{aligned} L_{11}&=A_{11}^{*} ()_{,xx} +\left( {r^{-2}A_{44}^{*} +I_0 \Omega ^{2}} \right) ()_{,\theta \theta } , \\ L_{12}&=r^{-1}\left( {A_{12}^{*} +A_{44}^{*} } \right) ()_{,x\theta } , \\ L_{13}&=r^{-1}A_{12}^{*} ()_{,x} -B_{11}^{*} ()_{,xxx}\\&\quad -r^{-2}\left( {B_{12}^{*} +2B_{44}^{*} } \right) ()_{,x\theta \theta } , \\ L_{21}&=L_{12} , \\ L_{22}&=A_{44}^{*} ()_{,xx} +\left( {r^{-2}A_{11}^{*} +I_0 \Omega ^{2}} \right) ()_{,\theta \theta } , \\ L_{23}&=\left( {r^{-2}A_{11}^{*} +2I_0 \Omega ^{2}} \right) ()_{,\theta }\\&\quad -r^{-3}B_{11}^{*} ()_{,\theta \theta \theta } -r^{-1}\left( {B_{12}^{*} +2B_{44}^{*} } \right) ()_{,xx\theta } , \\ L_{31}&=-L_{13} ,\,\,L_{32} =-L_{23} , \\ L_{33}&=-r^{-2}A_{11}^*()+\left( {2r^{-1}B_{12}^*-N^{T}} \right) ()_{,xx} \\&\quad +\left( {2r^{-3}B_{11}^*+I_0 \Omega ^{2}-r^{-2}N^{T}} \right) ()_{,\theta \theta } \\&\quad -D_{11}^*()_{,xxxx} -r^{-4}D_{11}^*()_{,\theta \theta \theta \theta } \\&\quad -2r^{-2}\left( {D_{12}^*+2D_{44}^*} \right) ()_{,xx\theta \theta } . \\ \end{aligned} \end{aligned}$$
(A.1)

Appendix B

Elements of the determinant of matrix (22) have the following forms

$$\begin{aligned} \Gamma _{11}^{*}= & {} A_{\mathrm{11}}^{*} \frac{\Lambda _{\mathrm{2}} }{\Lambda _{\mathrm{1}} }-n^{2}\left( {r^{-2}A_{\mathrm{44}}^{*} +I_0 \Omega ^{2}} \right) ,\nonumber \\ \Gamma _{12}^{*}= & {} nr^{-1}\left( {A_{\mathrm{12}}^{*} +A_{\mathrm{44}}^{*} } \right) ,\nonumber \\ \Gamma _{13}^{*}= & {} r^{-1}A_{\mathrm{12}}^{*} -B_{\mathrm{11}}^{*} \frac{\Lambda _{\mathrm{2}} }{\Lambda _{\mathrm{1}} }+n^{2}r^{-2}\left( {B_{\mathrm{12}}^{*} +2B_{44}^{*} } \right) , \nonumber \\ \Gamma _{21}^{*}= & {} -\,nr^{-1}\left( {A_{\mathrm{12}}^{*} +A_{44}^{*} } \right) \frac{\Lambda _4 }{\Lambda _3},\nonumber \\ \Gamma _{22}^{*}= & {} A_{44}^{*} \frac{\Lambda _4 }{\Lambda _3 }-n^{2}\left( {r^{-2}A_{\mathrm{11}}^{*} +I_0 \Omega ^{2}} \right) ,\nonumber \\ \Gamma _{23}^{*}= & {} -\,n\left( {r^{-2}A_{\mathrm{11}}^{*} +2I_0 \Omega ^{2}} \right) -n^{3}r^{-3}B_{\mathrm{11}}^{*} \nonumber \\&\quad +\,nr^{-1}\left( {B_{\mathrm{12}}^{*} +2B_{44}^{*} } \right) \frac{\Lambda _4 }{\Lambda _3 }, \nonumber \\ \Gamma _{31}^{*}= & {} -\,r^{-1}A_{\mathrm{12}}^{*} \frac{\Lambda _4 }{\Lambda _3 }+B_{\mathrm{11}}^{*} \frac{\Lambda _5 }{\Lambda _3}\nonumber \\&\quad -\,n^{2}r^{-2}\left( {B_{\mathrm{12}}^{*} +2B_{44}^{*} } \right) \frac{\Lambda _4 }{\Lambda _3 }, \nonumber \\ \Gamma _{32}^{*}= & {} \Gamma _{23} , \nonumber \\ \Gamma _{33}^{*}= & {} -\,r^{-2}A_{\mathrm{11}}^{*} +\left( {2r^{-1}B_{12}^*-N^{T}} \right) \frac{\Lambda _4 }{\Lambda _3 }\nonumber \\&\quad -\,n^{2}\left( {2r^{-3}B_{11}^*+I_0 \Omega ^{2}-r^{-2}N^{T}} \right) \nonumber \\&\quad -\,D_{\mathrm{11}}^{*} \frac{\Lambda _{\mathrm{5}} }{\Lambda _3 }-n^{4}r^{-4}D_{\mathrm{11}}^{*} \nonumber \\&\quad +\,2n^{2}r^{-2}\left( {D_{\mathrm{12}}^{*} +2D_{44}^{*} } \right) \frac{\Lambda _4 }{\Lambda _3 }, \end{aligned}$$
(B.1)

and

$$\begin{aligned} \Gamma _{11} =\frac{\Gamma _{12}^{*} \Gamma _{23}^{*} -\Gamma _{22}^{*} \Gamma _{13}^{*} }{\Gamma _{11}^{*} \Gamma _{22}^{*} -\Gamma _{12}^{*} \Gamma _{21}^{*} },\,\,\Gamma _{12} =\frac{\Gamma _{21}^{*} \Gamma _{13}^{*} -\Gamma _{11}^{*} \Gamma _{23}^{*} }{\Gamma _{11}^{*} \Gamma _{22}^{*} -\Gamma _{12}^{*} \Gamma _{21}^{*} },\nonumber \\ \end{aligned}$$
(B.2)

where the coefficients \(\varLambda _\mathrm{i} \left( {i=1,\,2,\,3,\,4,\,5} \right) \) related to the assumed shell models can be calculated from

$$\begin{aligned}&\left\{ {{\begin{array}{ccccc} {\Lambda _1 }&{} {\Lambda _2 }&{} {\Lambda _3 }&{}{\Lambda _4 }&{} {\Lambda _5 } \\ \end{array} }} \right\} \\&\quad =\int _0^L {\left\{ {{\begin{array}{ccccc} {\left( {\frac{\hbox {d}\phi }{\hbox {d}x}} \right) ^{2}}&{} {\frac{\hbox {d}^{3}\phi }{\hbox {d}x^{3}}\frac{\hbox {d}\phi }{\hbox {d}x}}&{} {\phi ^{\mathrm{2}}}&{} {\phi \frac{\hbox {d}^{\mathrm{2}}\phi }{\hbox {d}x^{\mathrm{2}}}}&{} {\phi \frac{\hbox {d}^{4}\phi }{\hbox {d}x^{4}}} \\ \end{array} }} \right\} } \hbox {d}x. \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Li, X., Gao, K. et al. Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment. Nonlinear Dyn 99, 981–1000 (2020). https://doi.org/10.1007/s11071-019-05297-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05297-8

Keywords

Navigation