Skip to main content
Log in

Leapfrogging solitary waves in coupled traveling-wave field-effect transistors

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Leapfrogging solitary waves are characterized in two capacitively coupled traveling-wave field-effect transistors (TWFETs). The coupling implies that a nonlinear solitary wave moving on one of the devices is bounded with the wave moving on the other one, which results in the periodic amplitude/phase oscillation called leapfrogging. In conservative systems, the oscillation energy of leapfrogging is converted to the generation of radiative waves; hence, leapfrogging is shown to cease in finite duration. This study investigated the possibility of amplification of moving solitary waves to stabilize leapfrogging in coupled TWFETs. First, coupled Korteweg–de Vries equations with perturbation were derived to verify the limit-cycle dynamics of the soliton’s amplitude and phase corresponding to the stable leapfrogging. We then numerically solved the transmission equations of the coupled TWFETs to validate stable leapfrogging in practical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu, A.K., Kubota, T., Ko, D.R.S.: Resonant transfer of energy between nonlinear waves in neighboring pycnoclines. Stud. Appl. Math. 63, 26–46 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Liu, A.K., Pereira, N.R., Ko, D.R.S.: Weakly interacting internal solitary waves in neighboring pycnoclines. J. Fluid Mech. 122, 187–194 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Weidman, P.D., Johnson, M.: Experiments on leapfrogging internal solitary waves. J. Fluid Mech. 122, 195–213 (1982)

    Article  Google Scholar 

  4. Gear, J.A., Grimshaw, R.: Weak and strong interactions between internal solitary waves. Stud. Appl. Math. 70, 235–258 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Nitsche, M., Weidman, P.D., Grimshaw, R., Ghrist, M., Fornberg, B.: Evolution of solitary waves in a two-picnocline system. J. Fluid Mech. 642, 235–277 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kivshar, Y.S., Malomed, B.A.: Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61, 763–915 (1989)

    Article  Google Scholar 

  7. Narahara, K.: Characterization of leapfrogging solitary waves in coupled nonlinear transmission lines. Nonlinear Dyn. 81, 1805–1814 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Malomed, B.A.: Leapfrogging solitons in a system of coupled KdV equations. Wave Motion 9, 401–411 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kivshar, Y.S., Malomed, B.A.: Solitons in a system of coupled KdV equations. Wave Motion 11, 261–269 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wright, J.D., Scheel, A.: Solitary waves and their linear stability in weakly coupled KdV equations. Z. Angew. Math. Phys. 58, 535–570 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. McIver, G.W.: A traveling-wave transistor. Proc. IEEE 53, 1747–1748 (1965)

    Article  Google Scholar 

  12. Holden, A.J., Daniel, D.R., Davies, I., Oxley, C.H., Rees, H.D.: Gallium arsenide traveling-wave field-effect transistors. IEEE Trans. Electron Devices 32, 61–66 (1985)

    Article  Google Scholar 

  13. Podgorsky, A.S., Wei, L.Y.: Theory of traveling-wave transistors. IEEE Trans. Electron Devices 29, 1845–1853 (1982)

    Article  Google Scholar 

  14. Narahara, K., Nakagawa, S.: Nonlinear traveling-wave field-effect transistors for amplification of short electrical pulses. IEICE Electron. Express 7, 1188–1194 (2010)

    Article  Google Scholar 

  15. Sardar, A., Husnine, S.M., Rizvi, S.T.R., Younis, M., Ali, K.: Multiple travelling wave solutions for electrical transmission line model. Nonlinear Dyn. 82, 1317–1324 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Salathiel, Y., Amadou, Y., Betchewe, G., Doka, S.Y., Crepin, K.T.: Soliton solutions and traveling wave solutions for a discrete electrical lattice with nonlinear dispersion through the generalized Riccati equation mapping method. Nonlinear Dyn. 87, 2435–2443 (2017)

    Article  MathSciNet  Google Scholar 

  17. El-Borai, M.M., El-Owaidy, H.M., Ahmed, H.M., Arnous, A.H.: Exact and soliton solutions to nonlinear transmission line model. Nonlinear Dyn. 87, 767–773 (2017)

    Article  Google Scholar 

  18. Akhmediev, N., Ankiewicz, A.: Dissipative Solitons. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  19. Narahara, K.: Synchronization of dissipative solitons in a system of closed traveling-wave field-effect transistors. Nonlinear Dyn. 94, 711–721 (2018)

    Article  Google Scholar 

  20. Narahara, K.: Modulation of pulse train using leapfrogging pulses developed in unbalanced coupled nonlinear transmission lines. Math. Prob. Eng. 2018, 2869731 (2018)

    Article  MathSciNet  Google Scholar 

  21. Qiu, J., Sun, K., Wang, T., Gao, H.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2895560

    Google Scholar 

  22. Sun, K., Mow, S., Qiu, J., Wang, T., Gao, H.: Adaptive fuzzy control for non-triangular structural stochastic switched nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. (2018). https://doi.org/10.1109/TFUZZ.2018.2883374

    Google Scholar 

  23. Garg, R., Bahl, I., Bozzi, M.: Microstrip Lines and Slotlines. Artech House, Boston (2013)

    Google Scholar 

  24. Jeffrey, A., Kawahara, T.: Asymptotic Methods in Nonlinear Wave Theory. Pitman, London (1982)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Narahara.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation of the coupled KdV equations

Appendix: Derivation of the coupled KdV equations

In this Appendix, we obtained the coupled KdV equations with the perturbing terms through the reductive perturbation method [24]. First, long-wavelength approximation is applied to the transmission equations for T\(_{1}\) and \(T_{2}\), resulting in

$$\begin{aligned}&L_g\{C_{gd}+C_{gs}(V_1)+C_m\}\frac{\partial ^2V_1}{\partial t^2}\nonumber \\&\qquad +\,L_g\frac{dC_{gs}(V_1)}{dV_1}\left( \frac{\partial V_1}{\partial t}\right) ^2\nonumber \\&\qquad +\,R_g\{C_{gd}+C_{gs}(V_1)+C_m\}\frac{\partial V_1}{\partial t}\nonumber \\&\qquad -\,R_gC_{gd}\frac{\partial W_1}{\partial t} - L_gC_{gd}\frac{\partial ^2W_1}{\partial t^2}\nonumber \\&\qquad -\,C_mL_g\frac{\partial ^2 W_2}{\partial t^2} - C_m R_g\frac{\partial W_2}{\partial t}\nonumber \\&\quad =\frac{\partial ^2 V_1}{\partial x^2}+\frac{1}{12}\frac{\partial ^4 V_1}{\partial x^4} + \frac{1}{360}\frac{\partial ^6 V_1}{\partial x^6}, \end{aligned}$$
(26)
$$\begin{aligned}&L_d\{C_{gd}+C_{ds}(W_1)\}\frac{\partial ^2W_1}{\partial t^2}\nonumber \\&\qquad +\,L_d\frac{\mathrm{d}C_{ds}(W_1)}{\mathrm{d}W_1}\left( \frac{\partial W_1}{\partial t}\right) ^2\nonumber \\&\qquad +\,R_d\{C_{gd}+C_{ds}(W_1)\}\frac{\partial W_1}{\partial t}\nonumber \\&\qquad -\,L_dC_{gd}\frac{\partial ^2V_1}{\partial t^2}\nonumber \\&\qquad -\,R_dC_{gd}\frac{\partial V_1}{\partial t}+L_d\frac{\mathrm{d}I_{\mathrm{d}s}(V_1,W_1)}{dV_1}\frac{\partial V_1}{\partial t}\nonumber \\&\qquad +\,L_d\frac{\mathrm{d}I_{ds}(V_1,W_1)}{\mathrm{d}W_1}\frac{\partial W_1}{\partial t}+R_dI_{ds}(V_1,W_1)\nonumber \\&\quad =\frac{\partial ^2 W_1}{\partial x^2}+\frac{1}{12}\frac{\partial ^4 W_1}{\partial x^4} + \frac{1}{360}\frac{\partial ^6 W_1}{\partial x^6}. \end{aligned}$$
(27)

We introduce new coordinates \((\tau , \xi )\) as \(\tau =\epsilon ^{3/2}t\) and \(\xi =\epsilon ^{1/2}(x-ut)\) and expand \(V_i\) (\(i = 1, 2\)) as

$$\begin{aligned} V_{i}= & {} V_{G0}+\sum _{n=1}^\infty \epsilon ^nv_{i}^{(n)}, \end{aligned}$$
(28)
$$\begin{aligned} W_{i}= & {} V_{D0}+\sum _{n=1}^\infty \epsilon ^nw_{i}^{(n)}. \end{aligned}$$
(29)

The transmission equations are then expanded in series with respect to \(\epsilon \). We assume herein that \(R_{g, d}\) and \(I_d\) are \(\epsilon ^{3/2}\) order parameters and \(C_m\) is an \(\epsilon \) order. By \(O(\epsilon ^2)\) terms, u is shown to satisfy the condition

$$\begin{aligned} u=u_\pi \equiv \sqrt{\frac{X_2-\sqrt{X_2^2-4L_gL_dX_1}}{2L_gL_dX_1}}, \end{aligned}$$
(30)

where \(X_1=C_{gd}C_{GS0}+C_{GS0}C_{\mathrm{DS}0}+C_{\mathrm{DS}0}C_{gd}\) and \(X_2=(C_{\mathrm{DS}0}+C_{gd})L_d+(C_{GS0}+C_{gd})L_g\). Moreover, \(v_{i}^{(1)}\) (\(i=1, 2\)) is shown to be proportional to \(w_{i}^{(1)}\), i.e.,

$$\begin{aligned} v_{i}^{(1)}=A_\pi w_{i}^{(1)}, \end{aligned}$$
(31)

where \(A_\pi =C_{gd}L_gu_\pi ^2/\{(C_{gd}+C_{GS0})L_gu_\pi ^2-1\}\). The model transmission equation is straightforwardly obtained by the \(O(\epsilon ^3)\) terms. The resulting equation for \(\psi _i^\prime =\epsilon w_i\) (\(i=1, 2\)) is

$$\begin{aligned}&\frac{\partial \psi _1^\prime }{\partial t}+u_\pi \frac{\partial \psi _1^\prime }{\partial x}-\frac{\alpha u_c^2u_\pi ^5L_gL_dC_{gd}}{2A_\pi (u_c^2-u_\pi ^2)} \psi _1^\prime \frac{\partial \psi _1^\prime }{\partial x}\nonumber \\&\qquad +\,\frac{u_\pi }{24}\frac{\partial ^3 \psi _1^\prime }{\partial x^3}\nonumber \\&\quad =\frac{u_c^2u_\pi ^4L_gL_dC_{gd}}{2A_\pi (u_c^2-u_\pi ^2)}I_{ds}(V_{G0}+A_\pi \psi _1^\prime ,V_{D0}+\psi _1^\prime )\nonumber \\&\qquad -\,\left( \frac{u_c^2u_\pi ^2C_{gd}L_dA_\pi }{u_c^2-u_\pi ^2}\frac{L_gR_d-L_dR_g}{2L_gL_d}+\frac{R_d}{2L_d}\right) \psi _1^\prime \nonumber \\&\qquad +\,\frac{C_mC_{gd}u_\pi ^2X_1^{-3/2}}{2u_c(u_c^2-u_\pi ^2)\sqrt{L_gL_d}}\left( \frac{\partial \psi _2^\prime }{\partial x}-A_\pi \frac{\partial \psi _1^\prime }{\partial x}\right) ,\nonumber \\ \end{aligned}$$
(32)

where

$$\begin{aligned} u_c= & {} \sqrt{(X_2+\sqrt{X_2^2-4L_gL_dX_1})/2L_gL_dX_1}, \end{aligned}$$
(33)
$$\begin{aligned} \alpha= & {} \frac{mA_\pi ^3C_{GS0}}{V_{G0}-V_\mathrm{SDG}+V_{J}}+\frac{mC_{\mathrm{DS}0}}{V_{\mathrm{DS}0}-V_\mathrm{SDD}-V_{J}}.\nonumber \\ \end{aligned}$$
(34)

We simplify the coefficients by introducing other coordinates \(s=u_\pi t/2\) and \(z=12^{1/3}(x-u_\pi t)\) and a scaled variable \(\psi _i = \nu _0\psi _i^\prime \) (\(i = 1, 2\)), where

$$\begin{aligned} \nu _0 = \frac{12^{1/3}\alpha u_c^2u_\pi ^4L_gL_dC_{gd}}{6A_\pi (u_c^2-u_\pi ^2)}. \end{aligned}$$
(35)

We then obtain the following from Eq. (32)

$$\begin{aligned} \frac{\partial \psi _1}{\partial s}-6\psi _1\frac{\partial \psi _1}{\partial z}+\frac{\partial ^3\psi _1}{\partial z^3}=F_1(\psi _1,\psi _2), \end{aligned}$$
(36)

where \(F_1(.)\) represents the effect of the drain current and line resistances to the wave transmission. The explicit form is given by

$$\begin{aligned}&F_1(\psi _1,\psi _2)\nonumber \\&\quad =\frac{12^{1/3}\alpha u_\pi }{6}\left\{ \frac{u_c^2u_\pi ^3L_gL_dC_{gd}}{A_\pi (u_c^2-u_\pi ^2)}\right\} ^2\nonumber \\&\quad \quad \times I_{ds}\left( V_{G0}+\nu _0^{-1} A_\pi \psi _1,V_{D0}+\nu _0^{-1}\psi _1\right) \nonumber \\&\quad \quad -\,\left( \frac{u_c^2u_\pi C_{gd}A_\pi }{u_c^2-u_\pi ^2}\frac{L_gR_d-L_dR_g}{L_g}+\frac{R_d}{u_\pi L_d}\right) \psi _1\nonumber \\&\quad \quad +\,\frac{12^{1/3}C_mC_{gd}u_\pi X_1^{-3/2}}{u_c(u_c^2-u_\pi ^2)\sqrt{L_gL_d}}\left( \frac{\partial \psi _2}{\partial z}-A_\pi \frac{\partial \psi _1}{\partial z}\right) .\nonumber \\ \end{aligned}$$
(37)

Similarly, the transmission equations of \(T_2\) are given by

$$\begin{aligned}&L_g\{C_{gd}+C_{gs}(V_2)\}\frac{\partial ^2V_2}{\partial t^2}+L_g\frac{dC_{gs}(V_2)}{dV_2}\left( \frac{\partial V_2}{\partial t}\right) ^2\nonumber \\&\qquad +\,R_g\{C_{gd}+C_{gs}(V_2)\}\frac{\partial V_2}{\partial t}-L_gC_{gd}\frac{\partial ^2W_2}{\partial t^2}\nonumber \\&\qquad -\,R_gC_{gd}\frac{\partial W_2}{\partial t}\nonumber \\&\quad =\frac{\partial ^2 V_2}{\partial x^2}+\frac{1}{12}\frac{\partial ^4 V_2}{\partial x^4}+\frac{1}{360}\frac{\partial ^6 V_2}{\partial x^6}, \end{aligned}$$
(38)
$$\begin{aligned}&L_d\{C_{gd}+C_{ds}(W_2)+C_m\}\frac{\partial ^2W_2}{\partial t^2}+L_d\frac{\mathrm{d}C_{ds}(W_2)}{\mathrm{d}W_2}\nonumber \\&\qquad \times \left( \frac{\partial W_2}{\partial t}\right) ^2+R_d\{C_{gd}+C_{ds}(W_2)+C_m\}\frac{\partial W_2}{\partial t}\nonumber \\&\qquad -\,L_dC_{gd}\frac{\partial ^2V_2}{\partial t^2}-R_dC_{gd}\frac{\partial V_2}{\partial t}-C_mL_d\frac{\partial ^2 V_1}{\partial t^2}\nonumber \\&\qquad -\,C_m R_d\frac{\partial V_1}{\partial t}+L_d\frac{\mathrm{d}I_{ds}(V_2,W_2)}{\mathrm{d}V_2}\frac{\partial V_2}{\partial t}\nonumber \\&\qquad +\,L_d\frac{\mathrm{d}I_{ds}(V_2,W_2)}{\mathrm{d}W_2}\frac{\partial W_2}{\partial t}+R_dI_{ds}(V_2,W_2)\nonumber \\&\quad =\frac{\partial ^2 W_2}{\partial x^2}+\frac{1}{12}\frac{\partial ^4 W_2}{\partial x^4}+\frac{1}{360}\frac{\partial ^6 W_2}{\partial x^6}. \end{aligned}$$
(39)

The same procedure gives

$$\begin{aligned}&\frac{\partial \psi _2^\prime }{\partial t}+u_\pi \frac{\partial \psi _2^\prime }{\partial x}-\frac{\alpha u_c^2u_\pi ^5L_gL_dC_{gd}}{2A_\pi (u_c^2-u_\pi ^2)} \psi _2^\prime \frac{\partial \psi _2^\prime }{\partial x}+\frac{u_\pi }{24}\frac{\partial ^3 \psi _2^\prime }{\partial x^3}\nonumber \\&\quad =\frac{u_c^2u_\pi ^4L_gL_dC_{gd}}{2A_\pi (u_c^2-u_\pi ^2)}I_{ds}(V_{G0}+A_\pi \psi _2^\prime ,V_{D0}+\psi _2^\prime )\nonumber \\&\qquad -\,\left( \frac{u_c^2u_\pi ^2C_{gd}L_dA_\pi }{u_c^2-u_\pi ^2}\frac{L_gR_d-L_dR_g}{2L_gL_d}+\frac{R_d}{2L_d}\right) \psi _2^\prime \nonumber \\&\qquad +\,\frac{C_mC_{gd}u_\pi ^2X_1^{-3/2}}{2A_\pi u_c(u_c^2-u_\pi ^2)\sqrt{L_gL_d}}\left( A_\pi \frac{\partial \psi _1^\prime }{\partial x}-\frac{\partial \psi _2^\prime }{\partial x}\right) .\nonumber \\ \end{aligned}$$
(40)

Using coordinates s and z and scaled variables, we obtain

$$\begin{aligned} \frac{\partial \psi _2}{\partial s}-6\psi _2\frac{\partial \psi _2}{\partial z}+\frac{\partial ^3\psi _2}{\partial z^3}=F_2(\psi _1,\psi _2), \end{aligned}$$
(41)

where the source-term function \(F_2(.)\) is defined as

$$\begin{aligned} F_2(\psi _1,\psi _2)= & {} \frac{12^{1/3}\alpha u_\pi }{6}\left\{ \frac{u_c^2u_\pi ^3L_gL_dC_{gd}}{A_\pi (u_c^2-u_\pi ^2)}\right\} ^2\nonumber \\&\times I_{ds}\left( V_{G0}+\nu _0^{-1} A_\pi \psi _2,V_{D0}\right. \nonumber \\&\left. +\,\nu _0^{-1}\psi _2\right) \nonumber \\&-\,\left( \frac{u_c^2u_\pi C_{gd}A_\pi }{u_c^2-u_\pi ^2}\frac{L_gR_d-L_dR_g}{L_g}\right. \nonumber \\&\left. +\,\frac{R_d}{u_\pi L_d}\right) \psi _2\nonumber \\&+\,\frac{12^{1/3}C_mC_{gd}u_\pi X_1^{-3/2}}{A_\pi u_c(u_c^2-u_\pi ^2)\sqrt{L_gL_d}}\left( A_\pi \frac{\partial \psi _1}{\partial z}\right. \nonumber \\&\left. -\,\frac{\partial \psi _2}{\partial z}\right) . \end{aligned}$$
(42)

For symmetrical TWFETs, we set \(L_g = L_d\equiv L_0\), \(C_{GS0} = C_{\mathrm{DS}0} \equiv C_0\), and \(R_g=R_d = R_0\). In addition, both \(C_{gs}\) and \(C_{ds}\) are biased at a common reverse bias \(V_B\), i.e., \(V_{G0}-V_\mathrm{SDG} = V_\mathrm{SDD}-V_{\mathrm{DS}0} \equiv V_B\). Subsequently, \(u_c\), \(u_\pi \), \(\alpha \), and \(A_\pi \) become \(1/\sqrt{L_0C_0}\), \(1/\sqrt{L_0(C_0+2C_{gd})}\), \(-2mC_0/(V_B+V_J)\), and \(-1\), respectively. Equations (37) and (42) are simplified to

$$\begin{aligned}&F_1(\psi _1,\psi _2)=-\frac{mC_0\sqrt{L_0}}{12^{2/3}(C_0+2C_{gd})^{3/2}(V_B+V_J)}\nonumber \\&\quad \times I_{ds}\Biggl (V_{G0}-\frac{12^{2/3}(C_0+2C_{gd})(V_B+V_J)}{2mC_0}\psi _1,\nonumber \\&\quad V_{D0}+\frac{12^{2/3}(C_0+2C_{gd})(V_B+V_J)}{2mC_0}\psi _1\Biggr )\nonumber \\&\quad -\,R_0\sqrt{\frac{C_0+2C_{gd}}{L_0}}\psi _1\nonumber \\&\quad +\,\left( \frac{3}{2}\right) ^{1/3}\frac{C_m}{C_0+2C_{gd}}\left( \frac{\partial \psi _1}{\partial z}+\frac{\partial \psi _2}{\partial z}\right) , \end{aligned}$$
(43)
$$\begin{aligned}&F_2(\psi _1,\psi _2)=F_1(\psi _2,\psi _1). \end{aligned}$$
(44)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narahara, K. Leapfrogging solitary waves in coupled traveling-wave field-effect transistors. Nonlinear Dyn 97, 1359–1369 (2019). https://doi.org/10.1007/s11071-019-05053-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05053-y

Keywords

Navigation