Skip to main content
Log in

PID: a PDF-induced distance based on permutation cross-distribution entropy

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a PDF-induced distance (PID) based on permutation cross-distribution entropy is proposed to measure the dissimilarity between complex time series. It overcomes the effects of spatial distance by focusing on similar local fluctuation patterns. It also corrects the disadvantage of being insensitive to symmetric skewness distributions. We have applied PID to synthetic data and financial time series. The Euclidean distance is employed as a reference. In simulated experiments, eight signals generated from four models are detected, and results are presented by hierarchical clustering analysis via PID, which is correctly clustered and superior to other methods. Then, PID is applied to the real-world financial time series. Eight stocks in the global financial markets are employed. It reveals that they are clearly divided based on their financial backgrounds. The cophenetic correlation coefficient is used to measure the quality of solutions. It reveals that the PID is convincing and superior to the Euclidean distance. In addition, as a classic method for non-stationary time series, detrended cross-correlation analysis (DCCA) is adopted to compare the superiority of PID. Although experiments show that DCCA does perform well, it is inferior to PID. Also, we conduct additional experiments on the effects of non-Gaussian noises. Excitingly, PID can still cluster signals accurately after adding uniformly distributed noises, and the cophenetic correlation coefficient reaches 0.9788.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. Actually, there is a relationship between the effective number of bins ’nbin’ and the corresponding m that: \(\hbox {nbin}(2m+1)-\hbox {nbin}(2m-1)=2m, \hbox {nbin}(2m+2)-\hbox {nbin}(2m)=2m+1, m=1,2,\ldots \). Here, \(\hbox {nbin}(1)=1,~\hbox {nbin}(2)=2\).

References

  1. Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos. Comput. Phys. 4(4), 843 (1990)

    MATH  Google Scholar 

  2. Julier, S.J., Uhlmann, J.K., Durrant-Whyte, H.F.: A new approach for filtering nonlinear systems. In: Proceedings of 1995 American Control Conference - ACC’95. IEEE, Seattle, WA, USA, 21–23 June 1995 (1995). https://doi.org/10.1109/ACC.1995.529783

  3. Wang, H.O., Tanaka, K., Griffin, M.F.: An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (2002)

    Article  Google Scholar 

  4. Sun, K., Mou, S., Qiu, J., Wang, T., Gao, H.: Adaptive fuzzy control for non-triangular structural stochastic switched nonlinear systems with full state constraints (early access). IEEE Trans. Fuzzy Syst. (2018). https://doi.org/10.1109/TFUZZ.2018.2883374

    Article  Google Scholar 

  5. Qiu, J., Sun, K., Wang, T., Gao, H.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance (early access). IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2895560

    Article  Google Scholar 

  6. Pun, T.: A new method for gray-level picture threshold using the entropy of the histogram. Signal Process. 2(3), 223–237 (1985)

    Article  Google Scholar 

  7. Schlegel, R., Pfouts, R.W., Hochwald, W., Johnson, G.L.: The entropy law and the economic process. J. Econ. Issues 7(3), 475–499 (1973). https://doi.org/10.1080/00213624.1973.11503122

    Article  Google Scholar 

  8. Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit. 32(1), 71–86 (1999)

    Article  Google Scholar 

  9. Coifman, R.R., Wickerhauser, M.V.: Entropy-based algorithms for best basis selection. IEEE Trans. Inf. Theory 38(2), 713–718 (2002)

    Article  MATH  Google Scholar 

  10. Lake, D., Richman, J., Griffin, M., Moorman, J.: Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283(3), R789 (2002)

    Article  Google Scholar 

  11. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (2003)

    Article  MATH  Google Scholar 

  12. Phillips, S.J., Anderson, R.P., Schapire, R.E.: Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3), 231–259 (2006)

    Article  Google Scholar 

  13. Machado, J., Duarte, F., Duarte, G.: Analysis of stock market indices with multidimensional scaling and wavelets. Math. Probl. Eng. 2012(2012), 857–868 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Yin, Y., Shang, P.: Multivariate multiscale sample entropy of traffic time series. Nonlinear Dyn. 86(1), 1–10 (2016)

    Article  MathSciNet  Google Scholar 

  15. Shannon, C.E.: A mathematical theory of communication: the bell system technical journal. J. Frankl. Inst. 196(4), 519–520 (1938)

    Google Scholar 

  16. Chen, W., Zhuang, J., Yu, W., Wang, Z.: Measuring complexity using fuzzyen, apen, and sampen. Med. Eng. Phys. 31(1), 61–68 (2009)

    Article  Google Scholar 

  17. Pincus, S.: Approximate entropy (ApEn) as a complexity measure. Chaos 5(1), 110–117 (1995)

    Article  MathSciNet  Google Scholar 

  18. Richman, J., Moorman, J.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6), H2039–H2049 (2000)

    Article  Google Scholar 

  19. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89(6), 068102 (2007)

    Article  Google Scholar 

  20. Porta, A., Castiglioni, P., Bari, V., Bassani, T., Marchi, A., Cividjian, A., Quintin, L., Di, R.M.: K-nearest-neighbor conditional entropy approach for the assessment of the short-term complexity of cardiovascular control. Physiol. Meas. 34(1), 17 (2016)

    Article  Google Scholar 

  21. Zhao, X., Shang, P.: Measuring the uncertainty of coupling. EPL 110(6), 60007 (2015)

    Article  Google Scholar 

  22. Wang, J., Shang, P., Zhao, X., Xia, J.: Multiscale entropy analysis of traffic time series. Int. J. Mod. Phys. C 24(02), 1883–1896 (2013)

    Article  MathSciNet  Google Scholar 

  23. Huang, J., Shang, P., Zhao, X.: Multifractal diffusion entropy analysis on stock volatility in financial markets. Physica A Stat. Mech. Appl. 391(22), 5739–5745 (2012)

    Article  Google Scholar 

  24. He, J., Shang, P.: Comparison of transfer entropy methods for financial time series. Physica A Stat. Mech. Appl. 482, 772–785 (2017)

    Article  MathSciNet  Google Scholar 

  25. Yin, Y., Shang, P.: Weighted multiscale permutation entropy of financial time series. Nonlinear Dyn. 78(4), 2921–2939 (2014)

    Article  MathSciNet  Google Scholar 

  26. Li, P., Liu, C., Li, K., Zheng, D., Liu, C., Hou, Y.: Assessing the complexity of short-term heartbeat interval series by distribution entropy. Med. Biol. Eng. Comput. 53(1), 77–87 (2015)

    Article  Google Scholar 

  27. Dai, Y., He, J., Wu, Y., Chen, S., Shang, P.: Generalized entropy plane based on permutation entropy and distribution entropy analysis for complex time series. Physica A Stat. Mech. Appl. 520, 217–231 (2019)

    Article  Google Scholar 

  28. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)

    Article  Google Scholar 

  29. Ausstaniek, M.: Klauslehnertz: parameter selection for permutation entropy measurements. Int. J. Bifurc. Chaos 17(10), 3729–3733 (2007)

    Article  Google Scholar 

  30. Zunino, L., Zanin, M., Tabak, B.M., Pérez, D.G., Rosso, O.A.: Complexity-entropy causality plane: a useful approach to quantify the stock market inefficiency. Physica A Stat. Mech. Appl. 389(9), 1891–1901 (2012)

    Article  Google Scholar 

  31. Takens, F.: Detecting strange attractors in turbulence. In: Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer, Berlin (1981)

  32. Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50(1), 69–77 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  33. Granger, C.W.J., Joyeux, R.: An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 1(1), 15–29 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hosking, J.R.M.: Fractional differencing. Biometrika 68(1), 165–176 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  35. Podobnik, B., Horvatić, D., Lam Ng, A., Stanley, H.E., Ivanov, P.C.: Modeling long-range cross-correlations in two-component arfima and fiarch processes. Physica A Stat. Mech. Appl. 387(15), 3954–3959 (2012)

    Article  MathSciNet  Google Scholar 

  36. He, J., Shang, P.: q-SampEnAve: an adaptive measurement to recognize the patterns for short-term financial time series. Nonlinear Dyn. 94(3), 1987–2001 (2018)

    Article  Google Scholar 

  37. Boris, P., Eugene Stanley, H.: Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series. Phys. Rev. Lett. 100(8), 084102 (2008)

    Article  Google Scholar 

  38. Zhao, X., Shang, P., Shi, W.: Multifractal cross-correlation spectra analysis on chinese stock markets. Physica A Stat. Mech. Appl. 402(2), 84–92 (2014)

    Article  Google Scholar 

  39. Tsay, R.S.: Analysis of Financial Time Series. Wiley, Hoboken (2002)

    Book  MATH  Google Scholar 

  40. Rohlf, F.J., Fisher, D.R.: Tests for hierarchical structure in random data sets. Syst. Zool. 17(4), 407 (1968)

    Article  Google Scholar 

  41. Farris, J.S.: On the cophenetic correlation coefficient. Syst. Zool. 18(3), 279 (1969)

    Article  Google Scholar 

  42. Saraçli, S.: Comparison of hierarchical cluster analysis methods by cophenetic correlation. J. Inequal. Appl. 2013(1), 1–8 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Filipovic, V., Nedic, N., Stojanovic, V.: Robust identification of pneumatic servo actuators in the real situations. Forschung Im Ingenieurwesen 75(4), 183–196 (2011)

    Article  Google Scholar 

  44. Stojanovic, V., Nedic, N.: Joint state and parameter robust estimation of stochastic nonlinear systems. Int. J. Robust Nonlinear Control 26(14), 3058–3074 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The financial supports from the funds of the Fundamental Research Funds for the Central Universities (2019YJS193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayi He.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Shang, P. & Zhang, Y. PID: a PDF-induced distance based on permutation cross-distribution entropy. Nonlinear Dyn 97, 1329–1342 (2019). https://doi.org/10.1007/s11071-019-05051-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05051-0

Keywords

Navigation