Skip to main content
Log in

A nonlocal nonlinear Schrödinger equation derived from a two-layer fluid model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

By applying a simple symmetry reduction on a two-layer liquid model, a nonlocal counterpart of it is obtained. Then, a general form of nonlocal nonlinear Schrödinger (NNLS) equation with shifted parity, charge conjugate and delayed time reversal is obtained by using multi-scale expansion method. Some kinds of elliptic periodic wave solutions of the NNLS equation, which become soliton solutions and kink solutions when the modulus is taken as unity, are obtained by using elliptic function expansion method. Some representative figures of these solutions are given and analyzed in detail. In addition, by carrying out the classical symmetry method on the NNLS equation, not only the Lie symmetry group but also the related symmetry reduction solutions are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Article  Google Scholar 

  2. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear equations. Stud. Appl. Math. 139, 7–59 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fokas, A.S.: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 319–324 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ma, L.Y., Zhu, Z.N.: N-soliton solution for an integrable nonlocal discrete focusing nonlinear Schrödinger equation. Appl. Math. Lett. 59, 115–121 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu, Y.K., Li, B.: Rogue waves in the (2+1)-dimensional nonlinear Schrödinger equation with a parity-time-symmetric potential. Chin. Phys. Lett. 34, 010202 (2017)

    Article  Google Scholar 

  6. Wen, X.Y., Yan, Z.Y., Yang, Y.Q.: Dynamics of higher-order rational solitons for the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Chaos 26(6), 603–151 (2016)

    Article  Google Scholar 

  7. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 915–946 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Khare, A., Saxena, A.: Periodic and hyperbolic soliton solutions of a number of nonlocal nonlinear equations. J. Math. Phys. 56, 032104 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lou, S.Y., Qiao, Z.J.: Alice–Bob peakon systems. Chin. Phys. Lett. 34(10), 100201 (2017)

    Article  Google Scholar 

  10. Maucher, F., Siminos, E., Krolikowski, W., Skupin, S.: Quasiperiodic oscillations and homoclinic orbits in the nonlinear nonlocal Schrödinger equation. New J. Phys. 15, 083055 (2013)

    Article  MathSciNet  Google Scholar 

  11. Cockburn, S.P., Nistazakis, H.E., Horikis, T.P., Kevrekidis, P.G., Proukakis, N.P., Frantzeskakis, D.J.: Matter-wave dark solitons: stochastic versus analytical results. Phys. Rev. Lett. 104, 174101 (2010)

    Article  Google Scholar 

  12. Pertsch, T., Peschel, U., Kobelke, J., Schuster, K., Bartelt, H., Nolte, S., Tunnermann, A., Lederer, F.: Nonlinearity and disorder in fiber arrays. Phys. Rev. Lett. 93, 053901 (2004)

    Article  Google Scholar 

  13. Conti, C., Peccianti, M., Assanto, G.: Observation of optical spatial solitons in a highly nonlocal medium. Phys. Rev. Lett. 92, 113902 (2004)

    Article  Google Scholar 

  14. Lou, S.Y.: Alice–Bob Systems, \(P_s\)-\(T_d\)-\(C\) Principles and Multi-soliton Solutions. arXiv:1603.03975

  15. Lou, S.Y., Huang, F.: Alice–Bob physics: coherent solutions of nonlocal KdV systems. Sci. Rep. 7, 869 (2017)

    Article  Google Scholar 

  16. Jia, M., Lou, S.Y.: Exact \(P_sT_d\) invariant and \(P_sT_d\) symmetric breaking solutions, symmetry reductions and Bäcklund transformations for an AB-KdV system. Phys. Lett. A 382, 1157 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, C.C., Lou, S.Y., Jia, M.: Coherent structure of Alice–Bob modified Korteweg de-Vries equation. Nonlinear Dyn. 93, 1799 (2018)

    Article  MATH  Google Scholar 

  18. Tang, X.Y., Liang, Z.F.: A general nonlocal nonlinear Schrödinger equation with shifted parity, charge-conjugate and delayed time reversal. Nonlinear Dyn. 92, 815 (2018)

    Article  Google Scholar 

  19. Tang, X.Y., Liu, S.J., Liang, Z.F., Wang, J.Y.: A general nonlocal variable coefficient KdV equation with shifted parity and delayed time reversal. Nonlinear Dyn. 94(1), 693 (2018)

    Article  Google Scholar 

  20. Tang, X.Y., Liang, Z.F., Hao, X.Z.: Nonlinear waves of a nonlocal modified KdV equation in the atmospheric and oceanic dynamical system. Commun. Nonlinear Sci. 60, 62 (2018)

    Article  MathSciNet  Google Scholar 

  21. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  22. Liu, X.Z., Yu, J., Lou, Z.M.: New interaction solutions from residual symmetry reduction and consistent Riccati expansion of the (\(2+1\))-dimensional Boussinesq equation. Nonlinear Dyn. 92, 1469 (2018)

    Article  MATH  Google Scholar 

  23. Liu, X.Z., Yu, J., Lou, Z.M.: New Bäcklund transformations of the (\(2+1\))-dimensional Burgers system related to residual symmetry. Eur. Phys. J. Plus 133, 89 (2018)

    Article  Google Scholar 

  24. Liu, X.Z., Yu, J., Lou, Z.M.: New Bäcklund transformations of the (\(2+1\))-dimensional Bogoyavlenskii equation via localization of residual symmetries. Comput. Math. Appl 76(7), 1669 (2018)

    Article  MathSciNet  Google Scholar 

  25. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1979)

    Book  MATH  Google Scholar 

  26. Lou, S.Y.: Symmetry analysis and exact solutions of the \(2+1\) dimensional sine-Gordon system. J. Math. Phys. 41, 6509 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referee, whose comments and suggestions of the earlier version of the paper have led to a substantial clarification and revision of work. This work was supported by the National Natural Science Foundation of China under Grant Nos. 11405110, 11275129 and the Natural Science Foundation of Zhejiang Province of China under Grant No. LY18A050001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-zhong Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Xz., Yu, J. A nonlocal nonlinear Schrödinger equation derived from a two-layer fluid model. Nonlinear Dyn 96, 2103–2114 (2019). https://doi.org/10.1007/s11071-019-04908-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04908-8

Keywords

Navigation