Skip to main content
Log in

Coherent structure of Alice–Bob modified Korteweg de-Vries equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To describe two-place events, Alice–Bob systems have been established by means of the shifted parity and delayed time reversal in the preprint arXiv:1603.03975v2 [nlin.SI], (2016). In this paper, we mainly study exact solutions of the integrable Alice–Bob modified Korteweg de-Vries (AB-mKdV) system. The general Nth Darboux transformation for the AB-mKdV equation is constructed. By using the Darboux transformation, some types of shifted parity and time reversal symmetry breaking solutions including one-soliton, two-soliton, and rogue wave solutions are explicitly obtained. In addition to the similar solutions of the mKdV equation (group invariant solutions), there are abundant new localized structures for the AB-mKdV systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Article  Google Scholar 

  2. Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007)

    Article  MathSciNet  Google Scholar 

  3. Markum, H., Pullirsch, R., Wettig, T.: Non-Hermitian random matrix theory and lattice QCD with chemical potential. Phys. Rev. Lett. 83, 484–487 (1999)

    Article  MATH  Google Scholar 

  4. Lin, Z., Schindler, J., Ellis, F.M., Kottos, T.: Experimental observation of the dual behavior of PT-symmetric scattering. Phys. Rev. A 85, 050101 (2012)

    Article  Google Scholar 

  5. Ruter, C.E., Makris, K.G., EI-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of paritytime symmetry in optics. Nat. Phys. 6, 192–195 (2010)

    Article  Google Scholar 

  6. Musslimani, Z.H., Makris, K.G., EI-Ganainy, R., Christodoulides, D.N.: Optical solitons in PT periodic potentials. Phys. Rev. Lett. 100, 030402 (2008)

    Article  Google Scholar 

  7. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    Article  Google Scholar 

  8. Lou, S.Y.: Alice-Bob systems, \(P_{s}\)-\(T_{d}\)-\(C\) principles and multi-soliton solutions, arXiv:1603.03975v2 [nlin.SI], (2016)

  9. Jia, M., Lou, S.Y.: An AB–KdV equation: exact solutions, symmetry reductions and Bäcklund transformations, arXiv:1612.00546v1 [nlin.SI], (2016)

  10. Ablowitz, M.J., Musslimani, Z.H.: Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 915–946 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ji, J.L., Zhu, Z.N.: Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform. J. Math. Anal. Appl. 453, 973 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ablowitz, M.J., Musslimani, Z.H.: Integrable discrete PT symmetric model. Phys. Rev. E 90, 032912 (2014)

    Article  Google Scholar 

  13. Song, C.Q., Xiao, D.M., Zhu, Z.N.: Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrödinger equation. Commun. Nonlin. Sci. Numer. Simulat. 45, 13–28 (2017)

    Article  Google Scholar 

  14. Dimakos, M., Fokas, A.S.: Davey–Stewartson type equations in 4+2 and 3+1 possessing soliton solutions. J. Math. Phys. 54, 081504 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fokas, A.S.: Integrable nonlinear evolution partial differential equations in 4+2 and 3+1 dimensions. Phys. Rev. Lett. 96, 190201 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fokas, A.S.: Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation. Nonlinearity 29, 319–324 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yan, Z.Y.: Integrable PT-symmetric local and nonlocal vector nonlinear Schrodinger equations: a unified two-parameter model. Appl. Math. Lett. 47, 61–68 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yan, Z.Y.: Nonlocal general vector nonlinear Schrodinger equations: PT symmetribility, and solutions. Appl. Math. Lett. 62, 101–109 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lou, S.Y., Qiao, Z.J.: Alice–Bob peakon systems. Chin. Phys. Lett. 34, 100201 (2007)

    Article  Google Scholar 

  20. Lou, S.Y., Huang, F.: Alice–Bob Physics, coherent solutions of nonlocal KdV systems, arXiv:1606.03154v1 [nlin.SI], (2016); Sci. Rep. 7, 869 (2017)

  21. Lou, S.Y.: Consistent riccati expansion for integrable systems. Stud. Appl. Math. 134, 372–402 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gao, Y., Tang, X.Y.: A coupled variable coefficient modified KdV equation arising from a two-layer fluid system. Commun. Theor. Phys. 48, 961–970 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ji, J.L., Zhu, Z.N.: On a nonlocal modified Korteweg–de Vries equation: integrability, Darboux transformation and soliton solutions. Commun. Nonlin. Sci. Numer. Simulat. 42, 699–708 (2017)

    Article  MathSciNet  Google Scholar 

  24. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  25. Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformation in Soliton Theory and its Geometric Applications. Shanghai Sci-Tech Publishing House, Shanghai (2005)

    Google Scholar 

  26. Ma, W.X.: Wronskian solutions to integrable equations. Discret. Contin. Dyn. Syst, Suppl 506–515 (2009)

  27. Wazwaz, A.-M.: Multiple soliton solutions and multiple complex solitons for two distinct Boussinesq equations. Nonlin. Dyn. 85, 731–737 (2016)

    Article  MathSciNet  Google Scholar 

  28. Wazwaz, A.-M., El-Tantawy, S.A.: New (3+1)-dimensional equations of Burgers type and Sharma Tasso Olver type: multiple soliton solutions. Nonlin. Dyn. 87, 2457–2461 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to thank Professors D. J. Zhang, Z. N. Zhu, Q. P. Liu, X. B. Hu, and Y. Chen for their helpful discussions. The work was sponsored by the Global Change Research Program of China (No. 2015CB953904), Shanghai Knowledge Service Platform for Trustworthy Internet of Things (No. ZF1213), the National Natural Science Foundations of China (No. 11435005), and K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Lou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Lou, S.Y. & Jia, M. Coherent structure of Alice–Bob modified Korteweg de-Vries equation. Nonlinear Dyn 93, 1799–1808 (2018). https://doi.org/10.1007/s11071-017-3895-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3895-1

Keywords

Navigation