Skip to main content
Log in

Damage detection in nonlinear systems using an improved describing function approach with limited instrumentation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The describing function approach is a powerful tool for characterizing nonlinear dynamical systems in the frequency domain. In this paper, we extend the describing function approach to detect and localize the damage in initially healthy nonlinear systems with limited measurements. The requirement of complete FRF of the underlying linear system by describing function approach is overcome by using a newly developed nonparametric principal component analysis-based model. Numerical simulation studies have been carried out by considering a cantilever beam with multiple local nonlinear attachments to demonstrate the localization process of the improved describing function approach with limited instrumentation. Parametric estimation of a shear building model is considered as a second numerical example to demonstrate the capability of the proposed approach in identifying the different types of nonlinearities and as well as combined types of nonlinearities (i.e. more than one type of nonlinearity). These combined nonlinearities can exist either in the same or different spatial locations. Experimental investigations have also been presented in this paper to complement the numerical investigations to demonstrate the practical applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Sapsis, T.P., Quinn, D.D., Vakakis, A.F., Bergman, L.A.: Effective stiffening and damping enhancement of structures with strongly nonlinear local attachments. J. Vib. Acoust. 134, 011016 (2012)

    Article  Google Scholar 

  2. Kerschen, G., Worden, K., Vakasis, A.F., Golinval, J.C.: Past present and future of nonlinear identification in structural dynamics. Mech. Syst. Signal Process. 20, 505–592 (2006)

    Article  Google Scholar 

  3. Noel, J.P., Kerschen, G.: Nonlinear system identification in structural dynamics: 10 more years of progress. Mech. Syst. Signal Process. 83, 2–35 (2017)

    Article  Google Scholar 

  4. Bendat, J.S.: Nonlinear Systems Techniques and Applications. Wiley, New York (1998)

    MATH  Google Scholar 

  5. Prawin, J., Rao, A.R.M., Lakshmi, K.: Nonlinear parametric identification strategy combining reverse path and hybrid dynamic quantum particle swarm optimization. Nonlinear Dyn. 84(2), 797–815 (2016)

    Article  MathSciNet  Google Scholar 

  6. Prawin, J., Rao, A.R.M., Lakshmi, K.: Nonlinear identification of structures using ambient vibration data. Comput. Struct. 154(1), 116–134 (2015)

    Article  Google Scholar 

  7. Prawin, J., Rao, A.R.M.: Nonlinear identification of MDOF systems using Volterra series approximation. Mech. Syst. Signal Process. 84, 58–77 (2017)

    Article  Google Scholar 

  8. Rosenberg, R.M.: The normal modes of nonlinear n-degree-of-freedom systems. J. Appl. Mech. 30(1), 7–14 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  9. Shaw, S.W., Pierre, C.: Non-linear normal modes and invariant manifolds. J. Sound Vib. 150(1), 170–173 (1991)

    Article  Google Scholar 

  10. Vakasis, A.F.: Analysis and identification of linear and nonlinear normal modes in vibrating systems. PhD Thesis, California Institute of Technology, Pasadena, California (2009)

  11. Haller, G., Ponsioen, S.: Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction. Nonlinear Dyn. 86(3), 1493–1534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Platten, M.F., Wright, J.R., Cooper, J.E.: Identification of a continuous structure with discrete non-linear components using an extended modal model. In: Proc, ISMA, Manchester, pp. 2155–2168 (2004)

  13. Worden, K., Green, P.L.A.: Machine learning approach to nonlinear modal analysis. Mech. Syst. Signal Process. 84, 34–53 (2017)

    Article  Google Scholar 

  14. Kallas, M., Mourot, G., Maquin, D., Ragot, J.: Diagnosis of nonlinear systems using kernel principal component analysis. J. Phys. Conf. Ser. 570(7), 072004 (2014)

    Article  Google Scholar 

  15. Kerschen, G., Poncelet, F., Golinval, J.C.: Physical interpretation of independent component analysis in structural dynamics. Mech. Syst. Signal Process. 21(4), 1561–1575 (2007)

    Article  Google Scholar 

  16. Dervilis, N., Simpson, T.E., Wagg, D.J., Worden, K.: Nonlinear modal analysis via non-parametric machine learning tools. Strain 55, e12297 (2018)

  17. Masri, S.F., Caughey, T.: A nonparametric identification technique for nonlinear dynamic problems. J. Appl. Mech. 46(2), 433–447 (1979)

    Article  MATH  Google Scholar 

  18. Erazo, K., Nagarajaiah, S.: An offline approach for output-only Bayesian identification of stochastic nonlinear systems using unscented Kalman filtering. J. Sound Vib. 397, 222–240 (2017)

    Article  Google Scholar 

  19. Chatzi, E.N., Smyth, A.W.: The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non-collocated heterogeneous sensing. Struct. Control Health Monit. Off. J. Int. Assoc. Struct. Control Monit. Eur. Assoc. Control Struct. 16(1), 99–123 (2009)

    Google Scholar 

  20. Mariani, S., Ghisi, A.: Unscented Kalman filtering for nonlinear structural dynamics. Nonlinear Dyn. 49(1–2), 131–150 (2007)

    Article  MATH  Google Scholar 

  21. Lai, Z., Nagarajaiah, S.: Sparse structural system identification method for nonlinear dynamic systems with hysteresis/inelastic behaviour. Mech. Syst. Signal Process. 117, 813–842 (2019)

    Article  Google Scholar 

  22. Kougioumtzoglou, I.A., dos Santos, K.R., Comerford, L.: Incomplete data-based parameter identification of nonlinear and time-variant oscillators with fractional derivative elements. Mech. Syst. Signal Process. 94, 279–296 (2017)

    Article  Google Scholar 

  23. Lin, R.M., Ewins, D.J.: Location of localised stiffness non-linearity using measured data. Mech. Syst. Signal Process. 9(3), 329–339 (1995)

    Article  Google Scholar 

  24. Tanrikulu, O., Ozguven, H.N.: A new method for the identification of nonlinearities in vibrating structures. In: Structural dynamics: Recent advances, Proc., 4th International Conference, pp. 483–492 (1991)

  25. Ozer, M.B., Ozguven, H.N., Royston, T.J.: Identification of structural nonlinearities using describing functions and Sherman–Morrison method. Mech. Syst. Signal Process. 23(1), 30–44 (2009)

    Article  Google Scholar 

  26. Elizalde, H., Imregun, M.: An explicit frequency response function formulation for multi-degree of freedom nonlinear systems. Mech. Syst. Signal Process. 20(8), 1867–1882 (2006)

    Article  Google Scholar 

  27. Aykan, M., Nevzat Özgüven, H.: Parametric identification of nonlinearity in structural systems using describing function inversion. Mech. Syst. Signal Process. 40, 356–376 (2013)

    Article  Google Scholar 

  28. Duarte, F.B., Machado, J.T.: Describing function of two masses with backlash. J. Nonlinear Dyn. Chaos Eng. syst. 56, 409 (2009)

    Article  MATH  Google Scholar 

  29. Attari, M., Haeri, M., Tavazoei, M.S.: Analysis of a fractional order Van der Pol-like oscillator via describing function method. J. Nonlinear Dyn. Chaos Eng. Syst. 61(1–2), 265–274 (2010)

    Article  MATH  Google Scholar 

  30. Van der Velde, W.E.: Multiple-Input Describing Functions and Nonlinear System Design. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  31. Hasselman, T.K., Anderson, M.C., Gan, W.: Principal components analysis for nonlinear model correlation, updating and uncertainty evaluation. In: Proceedings of the 16th International Modal Analysis Conference, Santa Barbara, pp. 644–651 (1998)

  32. Lenaerts, V., Kerschen, G., Golinval, J.C.: Proper orthogonal decomposition for model updating of non-linear mechanical systems. Mech. Syst. Signal Process. 15(1), 31–43 (2001)

    Article  Google Scholar 

  33. Silva, A.D., Cogan, S., Foltete, E., Buffe, F.: Metrics for nonlinear model updating in structural dynamics. J. Braz. Soc. Mech. Sci. Eng. 31(1), 27–34 (2009)

    Article  Google Scholar 

  34. Thouverez, F.: Presentation of the ECL benchmark. Mech. Syst. Signal Process. 17(1), 195–202 (2003)

    Article  MathSciNet  Google Scholar 

  35. Kammer, D.C.: Sensor set expansion for modal vibration testing. Mech. Syst. Signal Process. 19(4), 700–713 (2005)

    Article  Google Scholar 

  36. Kammer, D.C.: Sensor placement for on-orbit modal identification and correlation of large space structures. J. Guid. Control Dyn. 14, 251–259 (1991)

    Article  Google Scholar 

  37. Rao, A.R.M., Anandakumar, G.: Optimal sensor placement techniques for system identification and health monitoring of civil structures. Int. J. Smart Struct. Syst. 4(4), 465–492 (2008)

    Article  Google Scholar 

  38. Feeny, B.F., Kappagantu, R.: On the physical interpretation of proper orthogonal modes in vibrations. J. Sound Vib. 211(4), 607–616 (1998)

    Article  Google Scholar 

  39. Feeny, B.F., Liang, Y.: Interpreting proper orthogonal modes of randomly excited vibration systems. J. Sound Vib. 265, 953–966 (2003)

    Article  Google Scholar 

  40. Allison, T.C., Miller, A.K., Inman, D.J.: Modification of proper orthogonal coordinate histories for forced response simulation. In: Proceedings of the international conference on Engineering Dynamics, Portugal (2007)

  41. Prawin, J., Rao, A.R.M.: An online input force time history reconstruction algorithm using dynamic principal component analysis. Mech. Syst. Signal Process. 99, 516–533 (2018)

    Article  Google Scholar 

  42. Dacunha, J.J.: Transition matrix and generalized matrix exponential via the Peano–Baker series. J. Differ. Equ. Appl. 11(15), 1245–1264 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Canbaloğlu, G., Özgüven, H.N.: Model updating of nonlinear structures from measured FRFs. Mech. Syst. Signal Process. 80, 282–301 (2016)

    Article  Google Scholar 

  44. Herrara, C.A., et al.: Methodology for nonlinear quantification of a flexible beam with a local, strong nonlinearity. J. Sound Vib. 388, 298–314 (2017)

    Article  Google Scholar 

  45. Hot, A., Kerschen, G.: Detection and quantification of non-linear structural behaviour using principal component analysis. Mech. Syst. Signal Process. 26, 104–116 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is being published with the permission of the Director, CSIR-Structural Engineering Research Centre (SERC), Chennai. The authors would like to acknowledge the support received from Shri S. Harish Kumaran of ASTAR Lab, Shri D. Deivaraj and Shri M. Karunamoorthi of SHML laboratory, CSIR-SERC, while carrying out the experiments presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rama Mohan Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 6.

Table 6 Describing function for different types of nonlinearity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prawin, J., Rao, A.R.M. Damage detection in nonlinear systems using an improved describing function approach with limited instrumentation. Nonlinear Dyn 96, 1447–1470 (2019). https://doi.org/10.1007/s11071-019-04864-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04864-3

Keywords

Navigation