Skip to main content
Log in

The interpolating element-free Galerkin method for solving Korteweg–de Vries–Rosenau-regularized long-wave equation with error analysis

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The main target of this investigation is to develop a new numerical method for solving a class of wave models, i.e., the Korteweg–de Vries–Rosenau-regularized long-wave equation with application in plasma physics. The developed technique is concerning the interpolating element-free Galerkin method. The test and trial functions for the interpolating element-free Galerkin technique have been chosen from the interpolating moving least squares approximation. The interpolating moving least squares approximation shape functions unlike the moving least squares shape functions have the delta Kronecker property due to the use of a singular weight function. The stability and convergence of the new scheme are analyzed. Furthermore, the existence and uniqueness of solution have been proved for the full-discrete scheme. Finally, several examples in one- and two-dimensional cases have been studied to confirm the influence of the new scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Apolinar-Fernandez, A., Ramos, J.I.: Numerical solution of the generalized, dissipative KdV–RLW–Rosenau equation with a compact method. Commun. Nonlinear Sci. Numer. Simul. 60, 165–183 (2018)

    Article  MathSciNet  Google Scholar 

  2. Atouani, N., Omrani, K.: On the convergence of conservative difference schemes for the 2D generalized Rosenau–Korteweg de Vries equation. Appl. Math. Comput. 250, 832–847 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Atouani, N., Omrani, K.: Galerkin finite element method for the Rosenau-RLW equation. Comput. Math. Appl. 66, 289–303 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atouani, N., Omrani, K.: A new conservative high-order accurate difference scheme for the Rosenau equation. Appl. Anal. 94, 2435–2455 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Belytschko, T., Lu, Y.Y., Gu, L.: Element free Galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996)

    Article  MATH  Google Scholar 

  7. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    MATH  Google Scholar 

  8. Bui, T.Q., Nguyen, M.N., Zhang, C.: A moving Kriging interpolation-based element-free Galerkin method for structural dynamic analysis. Comput. Methods Appl. Mech. Eng. 200, 1354–1366 (2011)

    Article  MATH  Google Scholar 

  9. Cai, W., Sun, Y., Wang, Y.: Variational discretizations for the generalized Rosenau-type equations. Appl. Math. Comput. 271, 860–873 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Chen, L., Cheng, Y.M.: The complex variable reproducing kernel particle method for bending problems of thin plates on elastic foundations. Comput. Mech. 62, 67–80 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng, Y.M., Bai, F., Peng, M.: A novel interpolating element-free Galerkin (IEFG) method for two-dimensional elastoplasticity. Appl. Math. Model. 38(21), 5187–5197 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng, Y.M., Bai, F., Liu, C., Peng, M.: Analyzing nonlinear large deformation with an improved element-free Galerkin method via the interpolating moving least-squares method. Int. J. Comput. Mater. Sci. Eng. 5, 1650023 (2016)

    Google Scholar 

  13. Chung, H.J., Belytschko, T.: An error estimate in the EFG method. Comput. Mech. 21, 91–100 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chung, S.K., Ha, S.N.: Finite element Galerkin solutions for the Rosenau equation. Appl. Anal. 54, 39–56 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chung, S.K.: Finite difference approximate solutions for the Rosenau equation. Appl. Anal. 69(1–2), 149–156 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chunk, S.K., Pani, A.K.: Numerical methods for the Rosenau equation. Appl. Anal. 77, 351–369 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dai, B.D., Cheng, J., Zheng, B.: Numerical solution of transient heat conduction problems using improved meshless local Petrov–Galerkin method. Appl. Math. Comput. 219, 10044–10052 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Dai, B.D., Cheng, J., Zheng, B.: A moving Kriging interpolation-based meshless local Petrov–Galerkin method for elastodynamic analysis. Int. J. Appl. Mech. 5(1), 1350011–1350021 (2013)

    Article  Google Scholar 

  19. Deng, Y., Liu, C., Peng, M., Cheng, Y.M.: The interpolating complex variable element-free Galerkin method for temperature field problems. Int. J. Appl. Mech. 7, 1550017 (2015)

    Article  Google Scholar 

  20. Dehghan, M., Salehi, R.: The solitary wave solution of the two-dimensional regularized long-wave equation in fluids and plasmas. Comput. Phys. Commun. 182, 2540–2549 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin–Bona–Mahony–Burgers and regularized long-wave equations on non-rectangular domains with error estimate. J. Comput. Appl. Math. 286, 211–231 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dehghan, M., Abbaszadeh, M.: Analysis of the element free Galerkin (EFG) method for solving fractional cable equation with Dirichlet boundary condition. Appl. Numer. Math. 109, 208–234 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dehghan, M., Abbaszadeh, M.: Proper orthogonal decomposition variational multiscale element free Galerkin (POD-VMEFG) meshless method for solving incompressible Navier–Stokes equation. Comput. Methods Appl. Mech. Eng. 311, 856–888 (2016)

    Article  MathSciNet  Google Scholar 

  24. Dehghan, M., Shokri, A.: A numerical method for KdV equation using collocation and radial basis functions. Nonlinear Dyn. 50(1–2), 111–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dehghan, M., Manafian-Herris, J., Saadatmandi, A.: Application of semi-analytical methods for solving the Rosenau–Hyman equation arising in the pattern formation in liquid drops. Int. J. Numer. Methods Heat Fluid Flow 23(6), 777–790 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Feng-Xin, S., Ju-Feng, W., Yu-Min, C.: An improved interpolating element-free Galerkin method for elasticity. Chin. Phys. B 22(12), 120203 (2013)

    Article  Google Scholar 

  27. Ghiloufi, A., Kadri, T.: Analysis of new conservative difference scheme for two-dimensional Rosenau-RLW equation. Appl. Anal. 97, 1255–1267 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gu, L.: Moving Kriging interpolation and element-free Galerkin method. Int. J. Numer. Methods Eng. 56, 1–11 (2003)

    Article  MATH  Google Scholar 

  29. Gu, Y.T., Liu, G.R.: A local point interpolation method for static and dynamic analysis of thin beams. Comput. Methods Appl. Mech. Eng. 190, 5515–5528 (2001)

    Article  MATH  Google Scholar 

  30. Gu, Y.T., Liu, G.R.: A boundary point interpolation method for stress analysis of solids. Comput. Mech. 28, 47–54 (2002)

    Article  MATH  Google Scholar 

  31. Gu, Y.T., Wang, W., Zhang, L.C., Feng, X.Q.: An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields. Eng. Fract. Mech. 78, 175–190 (2011)

    Article  Google Scholar 

  32. He, D., Pan, K.: A linearly implicit conservative difference scheme for the generalized Rosenau–Kawahara-RLW equation. Appl. Math. Comput. 271, 323–336 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Hu, J.S., Zheng, K.L.: Two conservative difference schemes for the generalized Rosenau equation. Bound. Value Probl. (2010). Article ID 543503

  34. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Math. Comput. 37, 141–158 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, D., Zhang, Z., Liew, K.M.: A numerical framework for two-dimensional large deformation of inhomogeneous swelling of gels using the improved complex variable element-free Galerkin method. Comput. Methods Appl. Mech. Eng. 274, 84–102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, D., Bai, F., Cheng, Y.M., Liew, K.M.: A novel complex variable element-free Galerkin method for two-dimensional large deformation problems. Comput. Methods Appl. Mech. Eng. 233, 1–10 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Li, X.: A meshless interpolating Galerkin boundary node method for Stokes flows. Eng. Anal. Bound. Elem. 51, 112–122 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ju-Feng, W., Feng-Xin, S., Yu-Min, C.: An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems. Chin. Phys. B 21(9), 090204 (2012)

    Article  Google Scholar 

  39. Li, X., Wang, Q.: Analysis of the inherent instability of the interpolating moving least squares method when using improper polynomial bases. Eng. Anal. Bound. Elem. 73, 21–34 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, X.: Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces. Appl. Numer. Math. 99, 77–97 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, X.: Meshless Galerkin algorithms for boundary integral equations with moving least square approximations. Appl. Numer. Math. 61(12), 1237–1256 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Li, X., Chen, H., Wang, Y.: Error analysis in Sobolev spaces for the improved moving least-square approximation and the improved element-free Galerkin method. Appl. Math. Comput. 262, 56–78 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Liew, K.M., Cheng, Y.M.: Complex variable boundary element-free method for two-dimensional elastodynamic problems. Comput. Methods Appl. Mech. Eng. 198, 3925–3933 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu, F., Cheng, Y.M.: The improved element-free Galerkin method based on the nonsingular weight functions for inhomogeneous swelling of polymer gels. Int. J. Appl. Mech. 10(4), 1850047 (2018)

    Article  Google Scholar 

  45. Meng, Z.J., Cheng, H., Ma, L.D., Cheng, Y.M.: The dimension split element-free Galerkin method for three-dimensional potential problems. Acta Mech. Sin./Lixue Xuebao 34(3), 462–474 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mittal, R.C., Jain, R.K.: Numerical solution of general Rosenau-RLW equation using quintic B-splines collocation method. Commun. Numer. Anal. 2012, 1–19 (2012)

    Article  MathSciNet  Google Scholar 

  47. Pan, X., Zhang, L.: On the convergence of a conservative numerical scheme for the usual Rosenau-RLW equation. Appl. Math. Model. 36, 3371–3378 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Pan, X., Zheng, K., Zhang, L.: Finite difference discretization of the Rosenau-RLW equation. Appl. Anal. 92, 2578–2589 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, New York (1997)

    MATH  Google Scholar 

  50. Ren, H., Cheng, Y.: The interpolating element-free Galerkin (IEFG) method for two-dimensional potential problems. Eng. Anal. Bound. Elem. 36(5), 873–880 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ren, H.P., Zhang, W.: An improved boundary element-free method (IBEFM) for two-dimensional potential problems. Chin. Phys. B 18(10), 4065–4073 (2009)

    Article  Google Scholar 

  52. Ren, H.P., Cheng, Y.M., Zhang, W.: An interpolating boundary element-free method (IBEFM) for elasticity problems. Sci. China Phys. Mech. Astron. 53(4), 758–766 (2010)

    Article  Google Scholar 

  53. Ren, H.P., Cheng, J., Huang, A.: The complex variable interpolating moving least-squares method. Appl. Math. Comput. 219, 1724–1736 (2012)

    MathSciNet  MATH  Google Scholar 

  54. Shokri, A., Dehghan, M.: A meshless method using the radial basis functions for numerical solution of the regularized long wave equation. Numer. Methods Part. Differ. 26, 807–825 (2010)

    MathSciNet  MATH  Google Scholar 

  55. Sun, F., Wang, J., Cheng, Y.M.: An improved interpolating element-free Galerkin method for elasticity. Chin. Phys. B 22(12), 120203 (2013)

    Article  Google Scholar 

  56. Sun, F., Wang, J., Cheng, Y.M., Huang, A.: Error estimates for the interpolating moving least-squares method in n-dimensional space. Appl. Numer. Math. 98, 79–105 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  57. Tongsuk, P., Kanok-Nukulchai, W.: Further investigation of element free Galerkin method using moving Kriging interpolation. Int. J. Comput. Methods 01, 345–365 (2004)

    Article  MATH  Google Scholar 

  58. Wang, J., Wang, J., Sun, F., Cheng, Y.M.: An interpolating boundary element-free method with nonsingular weight function for two-dimensional potential problems. Int. J. Comput. Methods 10, 1350043 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  59. Wang, J., Sun, F., Cheng, Y.M., Huang, A.: Error estimates for the interpolating moving least-squares method. Appl. Math. Comput. 245, 321–342 (2014)

    MathSciNet  MATH  Google Scholar 

  60. Wazwaz, A.M.: The tanh method for traveling wave solutions of nonlinear equations. Appl. Math. Comput. 154(3), 713–723 (2004)

    MathSciNet  MATH  Google Scholar 

  61. Wazwaz, A.M.: A sine-cosine method for handling nonlinear wave equations. Math. Comput. Model. 40(5–6), 499–508 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  62. Wazwaz, A.M.: New solitary wave solutions to the Kuramoto–Sivashinsky and the Kawahara equations. Appl. Math. Comput. 182(2), 1642–1650 (2006)

    MathSciNet  MATH  Google Scholar 

  63. Wazwaz, A.M.: Partial Differential Equations and Solitary Waves Theory. Higher Education Press, Beijin (2009)

    Book  MATH  Google Scholar 

  64. Zaky, M.A.: A Legendre collocation method for distributed-order fractional optimal control problems. Nonlinear Dyn. 91, 2667–2681 (2018)

    Article  MATH  Google Scholar 

  65. Zaky, M.A.: An improved tau method for the multi-dimensional fractional Rayleigh–Stokes problem for a heated generalized second grade fluid. Comput. Math. Appl. 75, 2243–2258 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  66. Zaky, M.A., Ezz-Eldien, S.S., Doha, E.H., Machado, J.T., Bhrawy, A.H.: An efficient operational matrix technique for multi-dimensional variable-order time fractional diffusion equations. J. Comput. Nonlinear Dyn. 11(1–8), 061002 (2016)

    Article  Google Scholar 

  67. Zhang, Z., Hao, S.Y., Liew, K.M., Cheng, Y.M.: The improved element-free Galerkin method for two-dimensional elastodynamics problems. Eng. Anal. Bound. Elem. 37, 1576–1584 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  68. Zhang, Z., Liew, K.M., Cheng, Y.: Coupling of the improved element-free Galerkin and boundary element methods for two-dimensional elasticity problems. Eng. Anal. Bound. Elem. 32, 100–107 (2008)

    Article  MATH  Google Scholar 

  69. Zhang, L.W., Deng, Y.J., Liew, K.M.: An improved element-free Galerkin method for numerical modeling of the biological population problems. Eng. Anal. Bound. Elem. 40, 181–188 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  70. Zhang, L.W., Deng, Y.J., Liew, K.M., Cheng, Y.M.: The improved complex variable element free Galerkin method for two-dimensional Schrödinger equation. Comput. Math. Appl. 68(10), 1093–1106 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  71. Zhang, Z., Liew, K.M., Cheng, Y., Lee, Y.Y.: Analyzing 2D fracture problems with the improved element free Galerkin method. Eng. Anal. Bound. Elem. 32, 241–250 (2008)

    Article  MATH  Google Scholar 

  72. Zhang, L., Deng, Y., Liew, K.M.: An improved element-free Galerkin method for numerical modeling of the biological population problems. Eng. Anal. Bound. Elem. 40, 181–188 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  73. Zhang, L., Deng, Y., Liew, K.M., Cheng, Y.: The improved complex variable element-free Galerkin method for two-dimensional Schrödinger equation. Comput. Math. Appl. 68(10), 1093–1106 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  74. Zhao, N., Ren, H.: The interpolating element-free Galerkin method for 2D transient heat conduction problems. Math. Probl. Eng. (2014). Article ID 712834

  75. Zheng, B., Dai, B.D.: A meshless local moving Kriging method for two-dimensional solids. Appl. Math. Comput. 218, 563–573 (2011)

    MathSciNet  MATH  Google Scholar 

  76. Zhu, P., Zhang, L.W., Liew, K.M.: Geometrically nonlinear thermo-mechanical analysis of moderately thick functionally graded plates using a local Petrov–Galerkin approach with moving Kriging interpolation. Compos. Struct. 107, 298–314 (2014)

    Article  Google Scholar 

  77. Zuo, J.M., Zhang, Y.M., Zhang, T.D.: A new conservative difference scheme for the general Rosenau-RLW equation. Bound. Value Probl. 13, 516260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  78. Zuo, D.W., Jia, H.X., Shan, D.M.: Dynamics of the optical solitons for a (2+1)-dimensional nonlinear Schrödinger equation. Superlattices Microdtructers 101, 522–528 (2017)

    Article  Google Scholar 

  79. Zuo, D.W., Jia, H.X.: Interaction of the nonautonomous soliton in the optical fiber. Optik 127, 11282–11287 (2016)

    Article  Google Scholar 

  80. Zuo, D.W., Mo, H.X., Zhou, H.P.: Multi-soliton solutions of the generalized Sawada–Kotera equation. Z. Naturfors. A 71, 305–309 (2016)

    Article  Google Scholar 

  81. Zuo, D.W.: Modulation instability and breathers synchronization of the nonlinear Schrödinger Maxwell–Bloch equation. Appl. Math. Lett. 79, 182–186 (2018)

    Article  MathSciNet  Google Scholar 

  82. Zuo, D.W., Gao, Y.T., Xue, L., Feng, Y.J., Sun, Y.H.: Rogue waves for the generalized nonlinear Schrödinger–Maxwell–Bloch system in optical-fiber communication. Appl. Math. Lett. 40, 78–83 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to give our sincere gratitude to the reviewers for their comments and suggestions that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Most of the natural phenomena can be simulated by the partial differential equations (PDEs). In the meantime, the nonlinear PDEs have important roles. In other words, many phenomena in nature and industry have been modeled by PDEs. There are several numerical and analytical procedures to solve PDEs such as finite difference, finite element, finite volume and meshless methods in which each of them has its own advantages and disadvantages. Nevertheless, for solving some PDEs, we have to use a special method.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbaszadeh, M., Dehghan, M. The interpolating element-free Galerkin method for solving Korteweg–de Vries–Rosenau-regularized long-wave equation with error analysis. Nonlinear Dyn 96, 1345–1365 (2019). https://doi.org/10.1007/s11071-019-04858-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04858-1

Keywords

Mathematics Subject Classification

Navigation