Skip to main content
Log in

Disturbance rejection control of morphing aircraft based on switched nonlinear systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The problem of disturbance rejection control for the longitudinal dynamics of a morphing aircraft is investigated based on switched nonlinear systems. A disturbance observer with nonlinear gains composed of two distinct linear regions is first designed, which adopts the idea of the extended state observer to provide the estimations of disturbances and can reduce the peaking value problem. To achieve disturbance rejection via the designed disturbance observer, two separate controllers are then designed for the velocity and altitude subsystem of the longitudinal motion model, where the altitude subsystem is modeled as switched nonlinear systems in lower triangular form and the backstepping design technique is applied. Furthermore, a modified dynamic surface is introduced at each step of the backstepping method to avoid the ‘explosion of complexity’ problem. It is proven rigorously that all signals of the closed-loop system remain bounded by the developed control scheme. Finally, comparative simulations validate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Wu, M., Xiao, T., Ang, H., Li, H.: Optimal flight planning for a Z-shaped Morphing-wing solar-powered unmanned aerial vehicle. J. Guid. Control Dyn. 41(2), 497–505 (2018)

    Article  Google Scholar 

  2. Afonso, F., Vale, J., Lau, F., Suleman, A.: Performance based multidisciplinary design optimization of morphing aircraft. Aerosp. Sci. Technol. 67, 1–12 (2017)

    Article  Google Scholar 

  3. Gamble, L.L., Pankonien, A.M., Inman, D.J.: Stall recovery of a Morphing wing via extended nonlinear Lifting-line theory. AIAA J. 55(9), 2956–2963 (2017)

    Article  Google Scholar 

  4. Ajaj, R.M., Beaverstock, C.S., Friswell, M.I.: Morphing aircraft: the need for a new design philosophy. Aerosp. Sci. Technol. 49, 154–166 (2016)

    Article  Google Scholar 

  5. Cheng, H., Dong, C., Wang, Q., Jiang, W.: Smooth switching linear parameter-varying fault detection filter design for morphing aircraft with asynchronous switching. Trans. Inst. Meas. Control. (2017). https://doi.org/10.1177/0142331217708238

  6. Yue, T., Wang, L., Ai, J.: Gain self-scheduled \(\rm H_\infty \) control for morphing aircraft in the wing transition process based on an LPV model. Chin. J. Aeronaut. 26(4), 909–917 (2013)

    Article  Google Scholar 

  7. Wen, N., Liu, Z., Sun, Y., Zhu, L.: Design of LPV-based sliding mode controller with finite time convergence for a morphing Aircraft. Int. J. Aerosp. Eng. (2017). https://doi.org/10.1155/2017/8426348

  8. Guo, T., Hou, Z., Zhu, B.: Dynamic modeling and active Morphing trajectory-attitude separation control approach for gull-wing aircraft. IEEE Access 5, 17006–17019 (2017)

    Article  Google Scholar 

  9. He, Z., Yin, M., Lu, Y.P.: Tensor product model-based control of morphing aircraft in transition process. Proc. IMechE Part G J. Aerosp. Eng. 230(2), 378–391 (2016)

    Article  Google Scholar 

  10. Yue, T., Zhang, X., Wang, L., Ai, J.: Flight dynamic modeling and control for a telescopic wing morphing aircraft via asymmetric wing morphing. Aerosp. Sci. Technol. 70, 328–338 (2017)

    Article  Google Scholar 

  11. Wu, Z., Lu, J., Rajput, J., Shi, J., Ma, W.: Adaptive neural control based on high order integral chained differentiator for morphing aircraft. Math. Probl. Eng. (2015). https://doi.org/10.1155/2015/787931

  12. Wu, Z., Lu, J., Zhou, Q., Shi, J.: Modified adaptive neural dynamic surface control for morphing aircraft with input and output constraints. Nonlinear Dyn. 87(4), 2367–2383 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wu, Z., Lu, J., Shi, J., Liu, Y., Zhou, Q.: Robust adaptive neural control of morphing aircraft with prescribed performance. Math. Probl. Eng. (2017). https://doi.org/10.1155/2017/1401427

  14. He, W., Yan, Z., Sun, C., Chen, Y.: Adaptive neural network control of a flapping wing micro aerial vehicle with disturbance observer. IEEE Trans. Cybern. 47(10), 3452–3465 (2017)

    Article  Google Scholar 

  15. He, W., Meng, T., He, X., Sun, C.: Iterative learning control for a flapping wing micro aerial vehicle under distributed disturbances. IEEE Trans. Cybern. (2017). https://doi.org/10.1109/TCYB.2018.2808321

  16. He, W., Ouyang, Y., Hong, J.: Vibration control of a flexible robotic manipulator in the presence of input deadzone. IEEE Trans. Ind. Inform. 13(1), 48–59 (2017)

    Article  Google Scholar 

  17. Wang, T., Dong, C., Wang, Q.: Finite-time boundedness control of morphing aircraft based on switched systems approach. Opt. Int. J. Light Electron Opt. 126(23), 4436–4445 (2015)

    Article  Google Scholar 

  18. Jiang, W., Dong, C., Wang, Q.: A systematic method of smooth switching LPV controllers design for a morphing aircraft. Chin. J. Aeronaut. 28(6), 1640–1649 (2015)

    Article  Google Scholar 

  19. Cheng, H., Chaoyang, D., Jiang, W., Qing, W., Yanze, H.: Non-fragile switched \(\rm H_\infty \) control for morphing aircraft with asynchronous switching. Chin. J. Aeronaut. 30(3), 1127–1139 (2017)

    Article  Google Scholar 

  20. Zhao, X., Zheng, X., Niu, B., Liu, L.: Adaptive tracking control for a class of uncertain switched nonlinear systems. Automatica 52, 185–191 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mao, Y., Zhang, H., Zhang, Z.: Finite-time stabilization of discrete-time switched nonlinear systems without stable subsystems via optimal switching signal design. IEEE Trans. Fuzzy Syst. 25(1), 172–180 (2017)

    Article  Google Scholar 

  22. Liu, X., Zhai, D., Dong, J., Zhang, Q.: Adaptive fault-tolerant control with prescribed performance for switched nonlinear pure-feedback systems. J. Frankl. Inst. 355(1), 273–290 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Niu, B., Karimi, H.R., Wang, H., Liu, Y.: Adaptive output-feedback controller design for switched nonlinear stochastic systems with a modified average dwell-time method. IEEE Trans. Syst. Man Cybern. Syst 47(7), 1371–1382 (2017)

    Article  Google Scholar 

  24. Li, Y., Tong, S., Liu, L., Feng, G.: Adaptive output-feedback control design with prescribed performance for switched nonlinear systems. Automatica 80, 225–231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhao, X., Yin, Y., Zhang, L., Yang, H.: Control of switched nonlinear systems via T-S fuzzy modeling. IEEE Trans. Fuzzy Syst. 24(1), 235–241 (2016)

    Article  Google Scholar 

  26. Liu, Z., Chen, B., Lin, C.: Adaptive neural backstepping for a class of switched nonlinear system without strict-feedback form. IEEE Trans. Syst. Man Cybern. Syst. 47(7), 1315–1320 (2017)

    Article  Google Scholar 

  27. Long, L., Zhao, J.: Adaptive output-feedback neural control of switched uncertain nonlinear systems with average dwell time. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1350–1362 (2015)

    Article  MathSciNet  Google Scholar 

  28. Li, Y., Tong, S.: Adaptive neural networks prescribed performance control design for switched interconnected uncertain nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. (2017). https://doi.org/10.1109/TNNLS.2017.2712698

  29. Lou, Z., Zhang, K., Wang, Y., Gao, Q.: Active disturbance rejection station-keeping control for solar-sail libration-point orbits. J. Guid. Control Dyn. 39(8), 1917–1921 (2016)

    Article  Google Scholar 

  30. Wu, Q., Sun, M., Chen, Z., Yang, Z., Wang, Z.: Tuning of active disturbance rejection attitude controller for statically unstable launch vehicle. J. Spacecr. Rockets 54(6), 1383–1389 (2017)

    Article  Google Scholar 

  31. Belmonte, L.M., Morales, R., Fernández-Caballero, A., Somolinos, J.A.: A tandem active disturbance rejection control for a laboratory helicopter with variable-speed rotors. IEEE Trans. Ind. Electron. 63(10), 6395–6406 (2016)

    Article  Google Scholar 

  32. Cui, R., Chen, L., Yang, C., Chen, M.: Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities. IEEE Trans. Ind. Electron. 64(8), 6785–6795 (2017)

    Article  Google Scholar 

  33. Yuan, Y., Zhang, P., Wang, Z., Guo, L., Yang, H.: Active disturbance rejection control for the ranger neutral buoyancy vehicle: a delta operator approach. IEEE Trans. Ind. Electron. 64(12), 9410–9420 (2017)

    Article  Google Scholar 

  34. Guo, B.Z., Zhao, Z.L.: On the convergence of an extended state observer for nonlinear systems with uncertainty. Syst. Control Lett. 60(6), 420–430 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Guo, B.Z., Zhao, Z.L.: On convergence of the nonlinear active disturbance rejection control for MIMO systems. SIAM J. Control. Optim. 51(2), 1727–1757 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhao, Z.L., Guo, B.Z.: Extended state observer for uncertain lower triangular nonlinear systems. Syst. Control Lett. 85(11), 100–108 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Seigler, T.M.: Dynamics and Control of Morphing Aircraft. Virginia Tech, Blacksburg (2005)

    Google Scholar 

  38. Gonzalez, T., Moreno, J.A., Fridman, L.: Variable gain super-twisting sliding mode control. IEEE Trans. Autom. Control. 57(8), 2100–2105 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chalanga, A., Kamal, S., Fridman, L.M., Bandyopadhyay, B., Moreno, J.A.: Implementation of super-twisting control: super-twisting and higher order sliding-mode observer-based approaches. IEEE Trans. Ind. Electron. 63(6), 3677–3685 (2016)

    Article  Google Scholar 

  40. Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    MATH  Google Scholar 

  41. Khalil, H.K.: High-gain observers in feedback control: Application to permanent magnet synchronous motors. IEEE Control Syst. 37(3), 25–41 (2017)

    Article  MathSciNet  Google Scholar 

  42. Khalil, H.K., Praly, L.: High-gain observers in nonlinear feedback control. Int. J. Robust Nonlinear Control. 24(6), 993–1015 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lee, J., Mukherjee, R., Khalil, H.K.: Output feedback performance recovery in the presence of uncertainties. Syst. Control Lett. 90, 31–37 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu, Y.H., Huang, L., Xiao, D.: Adaptive dynamic surface control for uncertain nonaffine nonlinear systems. Int. J. Robust Nonlinear Control. 27(4), 535–546 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sun, Z., Ge, S.S.: Analysis and synthesis of switched linear control systems. Automatica 41(2), 181–195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Swaroop, D., Hedrick, J.K., Yip, P.P., Gerdes, J.C.: Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control. 45(10), 1893–1899 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. Chen, M., Tao, G., Jiang, B.: Dynamic surface control using neural networks for a class of uncertain nonlinear systems with input saturation. IEEE Trans. Neural Netw. Learn. Syst. 26(9), 2086–2097 (2015)

    Article  MathSciNet  Google Scholar 

  48. Polyakov, A., Fridman, L.: Stability notions and Lyapunov functions for sliding mode control systems. J. Frankl. Inst. 351(4), 1831–1865 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Vázquez, C., Aranovskiy, S., Freidovich, L.B., Fridman, L.M.: Time-varying gain differentiator: a mobile hydraulic system case study. IEEE Trans. Control Syst. Technol. 24(5), 1740–1750 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of China (Grant No. 61374012), Aeronautical Science Foundation of China (Grant No. 2016ZA51011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligang Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Theorem 1

Appendix: Proof of Theorem 1

Proof

Define \(\eta _{\varepsilon _1}=\frac{x-{\hat{x}}}{\varepsilon _1}\), \(\eta _{\varepsilon _2}=\frac{x-{\hat{x}}}{\varepsilon _2}\), \(\eta _2=d-{\hat{d}}\), \(\eta =[\eta _{\varepsilon _1},\eta _2]^{T}\), \({\bar{\eta }}=[\eta _{\varepsilon _2},\eta _2]^{T}\), the dynamics of \(\eta _{\varepsilon _1}\) and \(\eta _2\) can be written as

$$\begin{aligned}&\left\{ \begin{aligned}&{\dot{\eta }}_{\varepsilon _1}=\frac{1}{\varepsilon _1}\left[ \eta _2-l_1\eta _{\varepsilon _1}-l_1l_3\left( \frac{\varepsilon _1}{\varepsilon _2}-1\right) \mathrm {sat}\left( \frac{\eta _{\varepsilon _1}}{l_3}\right) \right] ,\\&{\dot{\eta }}_2=\frac{1}{\varepsilon _1}\left[ -l_2\eta _{\varepsilon _1}-l_2l_3\left( \frac{\varepsilon _1^2}{\varepsilon _2^2}-1\right) \mathrm {sat}\left( \frac{\eta _{\varepsilon _1}}{l_3}\right) \right] +{\dot{d}},\\ \end{aligned}\right. \end{aligned}$$
(60)

Choose the following Lyapunov function candidate

$$\begin{aligned} W_1&=\frac{1}{2}k_1\eta _{\varepsilon _1}^2+\frac{1}{2}k_2\eta _2^2- k_3\eta _{\varepsilon _1}\eta _2 \nonumber \\&\quad +\, k_4\int _{0}^{\eta _{\varepsilon _1}}\mathrm {sat}\left( \frac{\eta _{\varepsilon _1}}{l_3}\right) \mathrm {d}\eta _{\varepsilon _1} \end{aligned}$$
(61)

where \(k_\iota (\iota =1,2,3,4)\) are positive constants, \(k_1>k_3\), \(k_2>k_3\). For the first three terms on the right-hand side of (61), it can be verified that

$$\begin{aligned}&\frac{1}{2}k_1\eta _{\varepsilon _1}^2+\frac{1}{2}k_2\eta _2^2- k_3\eta _{\varepsilon _1}\eta _2\geqslant \frac{1}{2}(k_1-k_3)\eta _{\varepsilon _1}^2 \nonumber \\&\quad +\,\frac{1}{2}(k_2-k_3)\eta _2^2>0 \end{aligned}$$
(62)

Besides, for the last term on the right-hand side of (61), \(\mathrm {sat}\left( \frac{\eta _{\varepsilon _1}}{l_3}\right) \) is an odd function of \(\eta _{\varepsilon _1}\). It follows that \(k_4\int _{0}^{\eta _{\varepsilon _1}}\mathrm {sat}\left( \frac{\eta _{\varepsilon _1}}{l_3}\right) \mathrm {d}\eta _{\varepsilon _1}=0\) for \(\eta _{\varepsilon _1}=0\), and \(k_4\int _{0}^{\eta _{\varepsilon _1}}\mathrm {sat}\left( \frac{\eta _{\varepsilon _1}}{l_3}\right) \mathrm {d}\eta _{\varepsilon _1}>0\) for \(\eta _{\varepsilon _1}\ne 0\). With (62), we can know that \(W_1\) is a positive definite function.

The time derivative of \(W_1\) along the trajectories of (60) is given by

$$\begin{aligned} {\dot{W}}_1&=\frac{1}{\varepsilon _1}\left\{ (k_1\eta _{\varepsilon _1}-k_3\eta _2) \left[ \eta _2-l_1\eta _{\varepsilon _1}-l_1l_3\left( \frac{\varepsilon _1}{\varepsilon _2}-1 \right) \right. \right. \nonumber \\&\quad \times \left. \mathrm {sat}\left( \frac{\eta _{ \varepsilon _1}}{l_3}\right) \right] +(k_2\eta _2-k_3\eta _{\varepsilon _1}) \nonumber \\&\quad \times \left[ -l_2\eta _{\varepsilon _1}-l_2l_3\left( \frac{\varepsilon _1^2}{\varepsilon _2^2}-1\right) \right. \nonumber \\&\quad \times \left. \left. \mathrm {sat}\left( \frac{\eta _{\varepsilon _1}}{l_3}\right) \right] \right\} +(k_2\eta _2-k_3\eta _{\varepsilon _1}){\dot{d}}\nonumber \\&\quad +\, \frac{1}{\varepsilon _1}\left\{ k_4\mathrm {sat}\left( \frac{\eta _{\varepsilon _1}}{l_3}\right) \right. \nonumber \\&\quad \times \eta _2-\left. k_4l_1\mathrm {sat}\left( \frac{\eta _{\varepsilon _1}}{l_3}\right) \eta _{\varepsilon _1}\right. \nonumber \\&\left. \quad -\, k_4l_1l_3\left( \frac{\varepsilon _1}{\varepsilon _2}-1\right) \mathrm {sat}^2\left( \frac{\eta _{\varepsilon _1}}{l_3}\right) \right\} \nonumber \\&=\frac{1}{\varepsilon _1}\left\{ -(k_1l_1-k_3l_2)\eta _{\varepsilon _1}^2-k_3\eta _2^2 \right. \nonumber \\&\quad \left. +\, (k_1-k_2l_2+k_3l_1)\nonumber \right. \\&\quad \times \left. \eta _{\varepsilon _1}\eta _2+\right. \left[ k_3l_1\left( \frac{\varepsilon _1}{\varepsilon _2}-1\right) - k_2l_2\left( \frac{\varepsilon _1^2}{\varepsilon _2^2}-1\right) \right] l_3\nonumber \\&\quad \times \mathrm {sat}\left( \frac{\eta _{\varepsilon _1}}{l_3}\right) \eta _2 +\left[ k_3l_2\left( \frac{\varepsilon _1^2}{\varepsilon _2^2}-1\right) \right. \nonumber \\&\left. \quad -\,k_1l_1\left( \frac{\varepsilon _1}{\varepsilon _2}-1\right) \right] \nonumber \\&\quad \times \left. l_3\mathrm {sat}\left( \frac{\eta _{\varepsilon _1}}{l_3}\right) \eta _{\varepsilon _1} \right\} +(k_2\eta _2-k_3\eta _{\varepsilon _1}){\dot{d}}+\frac{1}{\varepsilon _1}\nonumber \\&\quad \times \left\{ k_4\mathrm {sat}\left( \frac{\eta _{\varepsilon _1}}{l_3}\right) \eta _2- k_4l_1\mathrm {sat}\left( \frac{\eta _{\varepsilon _1}}{l_3}\right) \eta _{\varepsilon _1}\right. \nonumber \\&\quad -\,\left. k_4l_1l_3\left( \frac{\varepsilon _1}{\varepsilon _2}-1\right) \mathrm {sat}^2\left( \frac{\eta _{\varepsilon _1}}{l_3}\right) \right\} \end{aligned}$$
(63)

Let \(k_\iota (\iota =1,2,3,4)\) be chosen to satisfy

$$\begin{aligned}&\left\{ \begin{aligned}&k_1>k_3,\\&k_2>k_3,\\&k_1l_1-k_3l_2>0,\\&k_1-k_2l_2+k_3l_1=0,\\&k_4=\left[ k_2l_2\left( \frac{\varepsilon _1^2}{\varepsilon _2^2}-1\right) - k_3l_1\left( \frac{\varepsilon _1}{\varepsilon _2}-1\right) \right] l_3 \end{aligned}\right. \end{aligned}$$

then we have

$$\begin{aligned} {\dot{W}}_1&=\frac{1}{\varepsilon _1}\left\{ -(k_1l_1-k_3l_2) \eta _{\varepsilon _1}^2-k_3\eta _2^2\right. \nonumber \\&\quad -\,\left[ k_4l_1-k_3l_2l_3\left( \frac{\varepsilon _1^2}{\varepsilon _2^2}-1\right) + k_1l_1l_3\left( \frac{\varepsilon _1}{\varepsilon _2}-1\right) \right] \nonumber \\&\quad \times \left. \mathrm {sat}\left( \frac{\eta _{\varepsilon _1}}{l_3}\right) \eta _{\varepsilon _1}- k_4l_1l_3\left( \frac{\varepsilon _1}{ \varepsilon _2}-1\right) \mathrm {sat}^2\left( \frac{\eta _{\varepsilon _1}}{l_3}\right) \right\} \nonumber \\&\quad +\,(k_2\eta _2-k_3\eta _{\varepsilon _1}){\dot{d}} \end{aligned}$$
(64)

Since \(\varepsilon _2<\varepsilon _1\) and \(k_1l_1-k_3l_2>0\), it can be verified that

$$\begin{aligned}&k_4l_1-k_3l_2l_3\left( \frac{\varepsilon _1^2}{\varepsilon _2^2}-1\right) + k_1l_1l_3\left( \frac{\varepsilon _1}{\varepsilon _2}-1\right) >0\nonumber \\ \end{aligned}$$
(65)

Define two compact sets \({\mathcal {D}}_0=\{\varvec{\eta }\in {\mathbb {R}}^2|W_1(\varvec{\eta })\leqslant A_0\}\) and \({\mathcal {D}}_1=\{\varvec{\eta }\in {\mathbb {R}}^2|W_1(\varvec{\eta })\leqslant A_1\}\), where \(A_1\) is a constant such that the maximum value of \(|\eta _{\varepsilon _1}|\) in the compact set \({\mathcal {D}}_1\) is \(l_3\), \(A_0=\max \{W_1(\varvec{\eta }(0)), A_1\}\). The proof is then divided into the following two steps.

Step 1 We show that if \(\varvec{\eta }\in {\mathcal {D}}_0-{\mathcal {D}}_1\), then there exists a \(t_{\varepsilon _1}\geqslant 1\) such that \(\varvec{\eta }\in {\mathcal {D}}_1\) when \(t\geqslant t_{\varepsilon _1}\). The analysis is proceeded in view of the value of \(|\eta _{\varepsilon _1}|\).

Case 1\(|\eta _{\varepsilon _1}|\leqslant l_3\) In this case, \(\mathrm {sat}\left( \frac{\eta _{\varepsilon _1}}{l_3}\right) =\frac{\eta _{\varepsilon _1}}{l_3}\). For \(W_1\) and \({\dot{W}}_1\), one can further obtain

$$\begin{aligned} W_1&=\frac{1}{2}\left( k_1+\frac{k_4}{l_3}\right) \eta _{\varepsilon _1}^2+\frac{1}{2}k_2\eta _2^2- k_3\eta _{\varepsilon _1}\eta _2\nonumber \\&\leqslant \frac{1}{2}\left( k_1+k_3+\frac{k_4}{l_3}\right) \eta _{\varepsilon _1}^2+\frac{1}{2}(k_2+k_3)\eta _2^2 \end{aligned}$$
(66)
$$\begin{aligned} {\dot{W}}_1&=-\frac{1}{\varepsilon _1}\left( \varLambda _1\eta _{\varepsilon _1}^2+k_3\eta _2^2\right) + \left( k_2\eta _2-k_3\eta _{\varepsilon _1}\right) {\dot{d}}\nonumber \\&\leqslant -\frac{1}{2\varepsilon _1}\left( \varLambda _1\eta _{\varepsilon _1}^2+k_3\eta _2^2\right) - \frac{\kappa _1}{2\varepsilon _1}\Big \Vert \varvec{\eta }\Big \Vert ^2\nonumber \\&\quad +\, \sqrt{k_2^2+k_3^2}N_1\Big \Vert \varvec{\eta }\Big \Vert \end{aligned}$$
(67)

where \(\varLambda _1=\frac{\varepsilon _1}{\varepsilon _2}k_1l_1-\frac{\varepsilon _1^2}{\varepsilon _2^2}k_3l_2+\frac{\varepsilon _1}{\varepsilon _2l_3}k_4l_1\), \(\kappa _1=\min \{\varLambda _1,k_3\}\).

By setting \(\varepsilon _1\leqslant \varepsilon _{\mathrm {c}1}\triangleq \frac{\kappa _1\displaystyle \min _{\varvec{\eta }\in {\mathcal {D}}_0-{\mathcal {D}}_1} \Big \Vert \varvec{\eta }\Big \Vert }{2\sqrt{k_2^2+k_3^2}N_1}\), we arrive at

$$\begin{aligned} {\dot{W}}_1&\leqslant -\frac{1}{2\varepsilon _1}\left( \varLambda _1\eta _{\varepsilon _1}^2+k_3\eta _2^2\right) \nonumber \\&\quad -\, \Big \Vert \varvec{\eta }\Big \Vert \left( \frac{\kappa _1}{2\varepsilon _1}\Big \Vert \varvec{\eta }\Big \Vert - \sqrt{k_2^2+k_3^2}N_1\right) \nonumber \\&\leqslant -\frac{1}{2\varepsilon _1}\left( \varLambda _1\eta _{\varepsilon _1}^2+k_3\eta _2^2\right) \leqslant -\frac{\lambda _1}{\varepsilon _1}W_1<0 \end{aligned}$$
(68)

where \(\lambda _1=\min \left\{ \frac{\varLambda _1}{k_1+k_3+\frac{k_4}{l_3}},\frac{k_3}{k_2+k_3}\right\} \).

Case 2\(|\eta _{\varepsilon _1}|> l_3\) In this case, \(\mathrm {sat}\left( \frac{\eta _{\varepsilon _1}}{l_3}\right) =\mathrm {sign}(\eta _{\varepsilon _1})\), and \(W_1\) satisfies

$$\begin{aligned} W_1&=\frac{1}{2}k_1\eta _{\varepsilon _1}^2+\frac{1}{2}k_2\eta _2^2- k_3\eta _{\varepsilon _1}\eta _2+ k_4\left( |\eta _{\varepsilon _1}|-\frac{l_3}{2}\right) \nonumber \\&\leqslant \frac{1}{2}\left( k_1+k_3\right) \eta _{\varepsilon _1}^2+\frac{1}{2}(k_2+k_3)\eta _2^2+ k_4\left( |\eta _{\varepsilon _1}|-\frac{l_3}{2}\right) \end{aligned}$$
(69)

The corresponding derivative \({\dot{W}}_1\) now becomes

$$\begin{aligned} {\dot{W}}_1=&-\frac{1}{\varepsilon _1}\left[ (k_1l_1-k_3l_2)\eta _{\varepsilon _1}^2+k_3\eta _2^2\right. \nonumber \\&\quad \left. +\, \varLambda _2\left( |\eta _{\varepsilon _1}|-\frac{l_3}{2}\right) +\varLambda _3\right] +(k_2\eta _2-k_3\eta _{\varepsilon _1}){\dot{d}}\nonumber \\ \leqslant&-\frac{1}{\varepsilon _1}\left[ \frac{1}{2}(k_1l_1-k_3l_2) \eta _{\varepsilon _1}^2+\frac{k_3}{2}\eta _2^2\right. \nonumber \\&\quad \left. +\, \varLambda _2\left( |\eta _{\varepsilon _1}|-\frac{l_3}{2}\right) \right] \nonumber \\&\quad -\,\frac{\kappa _2}{2\varepsilon _1}\Big \Vert \varvec{\eta } \Big \Vert ^2-\frac{\Lambda _3}{\varepsilon _1}+ \sqrt{k_2^2+k_3^2}N_1\Big \Vert \varvec{\eta }\Big \Vert \end{aligned}$$
(70)

where \(\varLambda _2=k_4l_1-k_3l_2l_3\left( \frac{\varepsilon _1^2}{\varepsilon _2^2}-1\right) + k_1l_1l_3\left( \frac{\varepsilon _1}{\varepsilon _2}-1\right) \), \(\varLambda _3=\frac{l_3}{2}\varLambda _2+k_4l_1l_3\left( \frac{\varepsilon _1}{\varepsilon _2}-1\right) \), \(\kappa _2=\min \{k_1l_1-k_3l_2,k_3\}\).

Choosing \(\varepsilon _1\leqslant \varepsilon _{\mathrm {c}2}\triangleq \sqrt{\frac{2\kappa _2\varLambda _3}{k_2^2+k_3^2}}\frac{1}{N_1}\), then by the Young’s inequality [40], one gets

$$\begin{aligned}&\frac{\kappa _2}{2\varepsilon _1}\Big \Vert \varvec{\eta } \Big \Vert ^2+\frac{\Lambda _3}{\varepsilon _1} \geqslant 2\sqrt{\frac{\kappa _2}{2\varepsilon _1} \frac{\Lambda _3}{\varepsilon _1}}\Big \Vert \varvec{\eta }\Big \Vert \geqslant \sqrt{k_2^2+k_3^2}N_1\Big \Vert \varvec{\eta }\Big \Vert \end{aligned}$$
(71)

By (70) and (71), it follows that

$$\begin{aligned} {\dot{W}}_1&\leqslant -\frac{1}{\varepsilon _1}[\frac{1}{2}(k_1l_1-k_3l_2)\eta _{\varepsilon _1}^2+\frac{k_3}{2}\eta _2^2\nonumber \\&\quad +\, \varLambda _2(|\eta _{\varepsilon _1}|-\frac{l_3}{2})] \leqslant -\frac{\lambda _2}{\varepsilon _1}W_1<0 \end{aligned}$$
(72)

where \(\lambda _2=\min \left\{ \frac{k_1l_1-k_3l_2}{k_1+k_3},\frac{k_3}{k_2+k_3},\frac{\Lambda _2}{k_4}\right\} \).

With the above two cases, we know that \(W_1\) is strictly decreasing in \({\mathcal {D}}_0-{\mathcal {D}}_1\). We can then compute the specific bound on \(W_1\). Define \({\bar{\lambda }}_1=\min \{\lambda _1,\lambda _2\}\) and let \(\varepsilon _1\leqslant \min \{\varepsilon _{\mathrm {c}1},\)\(\varepsilon _{\mathrm {c}2}\}\), then applying the comparison principle of ordinary differential equations in (68) and (72) implies

$$\begin{aligned}&W_1(\varvec{\eta }(t))\leqslant \mathrm {e}^{-\frac{{\bar{\lambda }}_1}{\varepsilon _1}t}W_1(\varvec{\eta }(0)) \end{aligned}$$
(73)

Let \(t_{\varepsilon _1}=\frac{\varepsilon _1}{{\bar{\lambda }}_1}\ln (\frac{A_0}{A_1})\), it can be seen from (73) that \(\varvec{\eta }\in {\mathcal {D}}_1\) when \(t\geqslant t_{\varepsilon _1}\).

Step 2 We show that if \(\varvec{\eta }\in {\mathcal {D}}_1\), then there exists a \(t_{\varepsilon _2}\geqslant 0\) such that \(|x(t)-{\hat{x}}(t)|=O(\varepsilon _2^2)\) and \(|d(t)-{\hat{d}}(t)|=O(\varepsilon _2)\) when \(t\geqslant t_{\varepsilon _1}+t_{\varepsilon _2}\). Since \(|\eta _{\varepsilon _1}|\leqslant l_3\) always holds by the definition of \({\mathcal {D}}_1\), the dynamics of estimation errors can then be written as

$$\begin{aligned}&\left\{ \begin{aligned}&{\dot{\eta }}_{\varepsilon _2}=\frac{1}{\varepsilon _2}(\eta _2-l_1\eta _{\varepsilon _2}),\\&{\dot{\eta }}_2=-\frac{l_2}{\varepsilon _2}\eta _{\varepsilon _2}+{\dot{d}},\\ \end{aligned}\right. \end{aligned}$$
(74)

Choose the Lyapunov function candidate as follows

$$\begin{aligned}&W_2=\frac{1}{2}k_1\eta _{\varepsilon _2}^2+\frac{1}{2}k_2\eta _2^2- k_3\eta _{\varepsilon _2}\eta _2 \end{aligned}$$
(75)

It holds that

$$\begin{aligned}&\frac{1}{2}(k_1-k_3)\eta _{\varepsilon _2}^2+\frac{1}{2}(k_2-k_3)\eta _2^2\nonumber \\&\quad \leqslant W_2\leqslant \frac{1}{2}(k_1+k_3)\eta _{\varepsilon _2}^2+\frac{1}{2}(k_2+k_3)\eta _2^2 \end{aligned}$$
(76)

By the relationship between \(k_i(i=1,2,3)\), the derivative of \(W_2\) along the trajectories of (74) is given by

$$\begin{aligned} {\dot{W}}_2&=\frac{1}{\varepsilon _2}\left[ -(k_1l_1-k_3l_2)\eta _{\varepsilon _2}^2- k_3\eta _2^2\right] \nonumber \\&\quad +\,\left( k_2\eta _2-k_3\eta _{\varepsilon _2}\right) {\dot{d}} \end{aligned}$$
(77)

Define \(\lambda _3=\min \left\{ \frac{k_1-k_3}{2},\frac{k_2-k_3}{2}\right\} \), \(\lambda _4=\min \left\{ \frac{2(k_1l_1-k_3l_2)}{k_1+k_3},\right. \)\(\left. \frac{k_3}{k_2+k_3}\right\} \), we further obtain

$$\begin{aligned}&{\dot{W}}_2\leqslant -\frac{\lambda _4}{\varepsilon _2}W_2+\sqrt{k_2^2+k_3^2}N_1\sqrt{\frac{W_2}{\lambda _3}} \end{aligned}$$
(78)

With (78), we see that if \(W_2>\frac{4\varepsilon _2^2(k_2^2+k_3^2)N_1^2}{\lambda _3\lambda _4^2}\), then

$$\begin{aligned}&{\dot{W}}_2\leqslant -\frac{\lambda _4}{2\varepsilon _2}W_2<0 \end{aligned}$$
(79)

By the comparison principle of the ordinary differential equations, we further have

$$\begin{aligned}&W_2(\bar{\varvec{\eta }}(t))\leqslant \mathrm {e}^{-\frac{\lambda _4}{2\varepsilon _2}(t-t_{\varepsilon _1})} W_2(\bar{\varvec{\eta }}(t_{\varepsilon _1})) \end{aligned}$$
(80)

In view of the relationship between \(\varvec{\eta }\) and \(\bar{\varvec{\eta }}\), since \(\varvec{\eta }\in {\mathcal {D}}_1\) when \(t\geqslant t_{\varepsilon _1}\), there exists a constant \(A_2\) such that \(W_2(\bar{\varvec{\eta }}(t_{\varepsilon _1}))\leqslant A_2\). Let \(t_{\varepsilon _2}=\frac{2\varepsilon _2}{{\bar{\lambda }}_4}\ln (\frac{A_2}{A_3})\), where \(A_3=\frac{4\varepsilon _2^2(k_2^2+k_3^2)N_1^2}{\lambda _3\lambda _4^2}\), \(A_2=\max \{{\bar{A}}_2,A_3\}\), then for all \(t\geqslant t_{\varepsilon _1}+t_{\varepsilon _2}\),

$$\begin{aligned}&W_2(\bar{\varvec{\eta }}(t))\leqslant \frac{4\varepsilon _2^2\left( k_2^2+k_3^2\right) N_1^2}{\lambda _3\lambda _4^2} \end{aligned}$$
(81)

By the definition of \(W_2(\bar{\varvec{\eta }}(t))\), one finally reaches

$$\begin{aligned} \Big \Vert \bar{\varvec{\eta }}(t)\Big \Vert&\leqslant \sqrt{\frac{W_2(\bar{\varvec{\eta }}(t))}{\lambda _3}} \nonumber \\&\quad \leqslant \frac{2\varepsilon _2 N_1 \sqrt{k_2^2+k_3^2}}{\lambda _3\lambda _4} \end{aligned}$$
(82)
$$\begin{aligned} |x(t)-{\hat{x}}(t)|=\varepsilon _2|\eta _{\varepsilon _2}(t)|&\leqslant \varepsilon _2\Big \Vert \bar{\varvec{\eta }}(t)\Big \Vert \nonumber \\&\quad \leqslant \frac{2\varepsilon _2^2 N_1 \sqrt{k_2^2+k_3^2}}{\lambda _3\lambda _4} \end{aligned}$$
(83)
$$\begin{aligned} |d(t)-{\hat{d}}(t)|=|\eta _2(t)|&\leqslant \Big \Vert \bar{\varvec{\eta }}(t)\Big \Vert \nonumber \\&\quad \leqslant \frac{2\varepsilon _2 N_1 \sqrt{k_2^2+k_3^2}}{\lambda _3\lambda _4} \end{aligned}$$
(84)

We concluded from (83) and (84) that \(|x(t)-{\hat{x}}(t)|=O(\varepsilon _2^2)\) and \(|d(t)-{\hat{d}}(t)|=O(\varepsilon _2)\) when \(t\geqslant t_{\varepsilon _1}+t_{\varepsilon _2}\), which completes the proof of Theorem 1. \(\square \)

Remark 10

We note that the utilization of \(|\eta _{\varepsilon _1}|\) in (69) is for the convenience of the analysis in Step 1 to show that \(W_1\) is strictly decreasing in \({\mathcal {D}}_0-{\mathcal {D}}_1\). In fact, it can be verified by the definition of \(\eta _{\varepsilon _1}\) and \(W_1\) that \(W_1\) is a positive definite and continuously differentiable function. Moreover, the appearance of \(|\eta _{\varepsilon _1}|\) in (69) is only for the case that \(|\eta _{\varepsilon _1}|>l_3\), which does not contain the origin and the derivative of \(W_1\) can then be computed without suffering singularity problems. Similar approaches can also be found in [48, 49].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, L., Wang, Q. & Dong, C. Disturbance rejection control of morphing aircraft based on switched nonlinear systems. Nonlinear Dyn 96, 975–995 (2019). https://doi.org/10.1007/s11071-019-04834-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04834-9

Keywords

Navigation