Skip to main content
Log in

Approximations of stable manifolds in the vicinity of hyperbolic equilibrium points for fractional differential equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is devoted to the numerical analysis of the abstract semilinear fractional problem \(D^\alpha u(t) = Au(t) + f(u(t)), u(0)=u^0,\) in a Banach space E. We are developing a general approach to establish a semidiscrete approximation of stable manifolds. The phase space in the neighborhood of the hyperbolic equilibrium can be split in such a way that the original initial value problem is reduced to systems of initial value problems in the invariant subspaces corresponding to positive and negative real parts of the spectrum. We show that such a decomposition of the equation keeps the same structure under general approximation schemes. The main assumption of our results are naturally satisfied, in particular, for operators with compact resolvents and can be verified for finite element as well as finite difference methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonyuk, O.V., Kochubei, A.N., Piskarev, S.I.: On the compactness and the uniform continuity of a resolvent family for a fractional differential equation. (Russian. English summary). Dopov. Nats. Akad. Nauk Ukr. Mat. Pryr. Tekh. Nauky 2014 6, 7–12 (2014)

    MATH  Google Scholar 

  2. Bajlekova, E.G.: Fractional evolution equations in Banach spaces. Ph.D. thesis, Eindhoven University of Technology (2001)

  3. Beyn, W.-J., Piskarev, S.I.: Shadowing for discrete approximations of abstract parabolic equations. Discrete Contin. Dyn. Syst. Ser. B 10, 19–42 (2008)

    Article  MathSciNet  Google Scholar 

  4. Cao, Q., Pastor, J., Piskarev, S., Siegmund, S.: Approximations of parabolic equations at the vicinity of hyperbolic equilibrium point. Numer. Funct. Anal. Optim. 35, 1287–1307 (2014)

    Article  MathSciNet  Google Scholar 

  5. Carvalho, A.N., Piskarev, S.I.: A general approximation scheme for attractors of abstract parabolic problems. Numer. Funct. Anal. Optim. 27, 785–829 (2006)

    Article  MathSciNet  Google Scholar 

  6. Cong, N.D., Doan, T.S., Siegmund, S., Tuan, H.T.: On stable manifolds for planar fractional differential equations. Appl. Math. Comput. 226, 157–168 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Cong, N.D., Doan, T.S., Siegmund, S., Tuan, H.T.: On stable manifolds for fractional differential equations in high-dimensional spaces. Nonlinear Dyn. 86, 1885–1894 (2016)

    Article  MathSciNet  Google Scholar 

  8. Cong, N.D., Doan, T.S., Siegmund, S., Tuan, H.T.: Erratum to: On stable manifolds for fractional differential equations in high-dimensional spaces. Nonlinear Dyn. 86, 1895 (2016)

    Article  Google Scholar 

  9. Deshpande, A., Daftardar-Gejji, V.: Local stable manifold theorem for fractional systems. Nonlinear Dyn. 83, 2435–2452 (2016)

    Article  MathSciNet  Google Scholar 

  10. Deshpande, A., Daftardar-Gejji, V.: Erratum to: Local stable manifold theorem for fractional systems. Nonlinear Dyn. 87, 2779–2780 (2017)

    Article  Google Scholar 

  11. El-Borai, M.M.: Some probability densities and fundamental solutions of fractional evolution equations. Chaos Solitons Fractals 14, 433–440 (2002)

    Article  MathSciNet  Google Scholar 

  12. Fan, Z.: Characterization of compactness for resolvents and its applications. Appl. Math. Comput. 232, 60–67 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Guidetti, D., Karasözen, B., Piskarev, S.: Approximation of abstract differential equations. J. Math. Sci. 122, 3013–3054 (2004)

    Article  MathSciNet  Google Scholar 

  14. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin (1981)

    Book  Google Scholar 

  15. Keyantuo, V., Lizama, C., Warma, M.: Spectral criteria for solvability of boundary value problems and positivity of solutions of time-fractional differential equations, Abstr. Appl. Anal. 2013, Article ID 614328, p. 11 (2013)

  16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Book  Google Scholar 

  17. Kloeden, P., Piskarev, S.I.: Discrete convergence and the equivalence of equi-attraction and the continuous convergence of attractors. Int. J. Dyn. Syst. Differ. Equ. 1, 38–43 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Kokurin, M.M.: The uniqueness of a solution to the inverse Cauchy problem for a fractional differential equation in a Banach space. Russ. Math. 57, 16–30 (2013)

    Article  MathSciNet  Google Scholar 

  19. Krasnosel’skiĭ, M.A., Zabreĭko, P.P.: Geometrical methods of nonlinear analysis. Transl. from the Russian by Christian C. Fenske. Grundlehren der Mathematischen Wissenschaften, 263, Springer (1984)

  20. Krein, S.G.: Linear differential equations in Banach space. American Mathematical Society, Providence, R.I. Translated from the Russian by J. M. Danskin, Translations of Mathematical Monographs, vol. 29 (1971)

  21. Latushkin, Y., Prüss, J., Schnaubelt, R.: Stable and unstable manifolds for quasilinear parabolic systems with fully nonlinear boundary conditions. J. Evol. Equ. 6, 537–576 (2006)

    Article  MathSciNet  Google Scholar 

  22. Latushkin, Y., Prüss, J., Schnaubelt, R.: Center manifolds and dynamics near equilibria of quasilinear parabolic systems with fully nonlinear boundary conditions. Discrete Cont. Dyn. Syst. Ser. B 9, 595–633 (2008)

    Article  MathSciNet  Google Scholar 

  23. Li, K., Jia, J.: Existence and uniqueness of mild solutions for abstract delay fractional differential equations. Comput. Math. Appl. 62, 1398–1404 (2011)

    Article  MathSciNet  Google Scholar 

  24. Li, M., Zheng, Q.: On spectral inclusions and approximations of a-times resolvent families. Semigroup Forum 69(3), 356–368 (2004)

    MathSciNet  MATH  Google Scholar 

  25. Liu, H., Chang, J.C.: Existence for a class of partial differential equations with nonlocal conditions. Nonlinear Anal. Theory Methods Appl. 70, 3076–3083 (2009)

    Article  MathSciNet  Google Scholar 

  26. Liu, R., Li, M., Piskarev, S.I.: The order of convergence of difference schemes for fractional equations. Numer. Funct. Anal. Optim. 38, 754–769 (2017)

    Article  MathSciNet  Google Scholar 

  27. Liu, R., Li, M., Piskarev, S.I.: Approximation of semilinear fractional Cauchy problem. Comput. Methods Appl. Math. 15, 203–212 (2015)

    Article  MathSciNet  Google Scholar 

  28. Liu, R., Li, M., Piskarev, S.I.: Stability of difference schemes for fractional equations. Differ. Equ. 51, 904–924 (2015)

    Article  MathSciNet  Google Scholar 

  29. Lizama, C., Pereira, A., Ponce, R.: On the compactness of fractional resolvent operator functions. Semigroup Forum 93, 363–374 (2016)

    Article  MathSciNet  Google Scholar 

  30. Pastor, J., Piskarev, S.I.: The exponential dichotomy under discretization on general approximation scheme. Adv. Numer. Anal. 2011, Article ID582740 (2011)

  31. Piskarev, S.I.: Differential Equations in Banach Space and Their Approximation. Moscow State University Publish House (in Russian), Moscow (2005)

    Google Scholar 

  32. Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Math. Sci. Eng. 198, 261–300 (1998)

    Google Scholar 

  33. Ponce, R.: Existence of mild solutions to nonlocal fractional Cauchy problems via compactness. Abstr. Appl. Anal. 2016, Art. ID 4567092, p. 15 (2016)

  34. Popov, A.Y., Sedletskii, A.M.: Distribution of roots of Mittag-Leffler functions. J. Math. Sci. 190, 209–409 (2013)

    Article  MathSciNet  Google Scholar 

  35. Sayevand, K., Pichaghchi, K.: Successive approximation: a survey on stable manifold of fractional differential systems. Fract. Calc. Appl. Anal. 18, 621–641 (2015)

    Article  MathSciNet  Google Scholar 

  36. Vaĭnikko, G.: Funktionalanalysis der Diskretisierungsmethoden. Mit Englischen und Russischen Zusammenfassungen, Teubner-Texte zur Mathematik. B.G. Teubner Verlag, Leipzig (1976)

  37. Vaĭnikko, G.: Approximative methods for nonlinear equations (two approaches to the convergence problem). Nonlinear Anal. Theory Methods Appl. 2, 647–687 (1978)

    Article  MathSciNet  Google Scholar 

  38. Vasil’ev, V.V., Piskarev, S.I.: Differential equations in Banach spaces. II. Theory of cosine operator functions. J. Math. Sci. 122, 3055–3174 (2004)

    Article  MathSciNet  Google Scholar 

  39. Voigt, J.: On the convex compactness property for strong operator topology. Note Mat. 12, 259–269 (1992)

    MathSciNet  MATH  Google Scholar 

  40. Wang, R.N., Xiao, T.J., Liang, J.: A note on the fractional Cauchy problems with nonlocal initial conditions. Appl. Math. Lett. 24, 1435–1442 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Siegmund.

Additional information

Sergey Piskarev: Research was supported by grants of the Russian Foundation for Basic Research \(15-01-00026\_a, 16-01-00039\_a\), \(17-51-53008\) and DAAD and partly by the German Research Foundation (DFG) within the Cluster of Excellence EXC 1056 ’Center for Advancing Electronics Dresden’ (CFAED)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piskarev, S., Siegmund, S. Approximations of stable manifolds in the vicinity of hyperbolic equilibrium points for fractional differential equations. Nonlinear Dyn 95, 685–697 (2019). https://doi.org/10.1007/s11071-018-4590-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4590-6

Keywords

Mathematics Subject Classification

Navigation