Skip to main content
Log in

On soliton solutions of time fractional form of Sawada–Kotera equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Soliton solutions are of utmost importance among traveling wave solutions since they act as a bridge between mathematics and physics. This paper investigates time fractional form of fifth-order Sawada–Kotera equation resulting in different forms of exact and approximate soliton solutions including singular, periodic and dark soliton solutions. The time fractional derivative is used in the Caputo sense throughout the study. The effectiveness of trial equation method is seen in determining exact solutions, whereas residual power series method is employed for its high precision and reliability in calculating approximate solutions of the model. Multiple soliton solutions are also determined by the aid of Hirota’s method. The results are compared with a numerical method, and the graphical representation of all the obtained solutions is shown for different values of the fractional parameter. The time evolution of all solutions is also represented in 2D plots. These findings are highly encouraging to explore other nonlinear fractional models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maolin, D., Wang, Z., Hu, H.: Measuring memory with the order of fractional derivative. Sci. Rep. 3, 3431 (2013)

    Article  Google Scholar 

  2. Rana, S., Bhattacharya, S., Pal, J., NGuerekata, G., Chattopadhyay, J.: Paradox enrichment: a fractionl differential approach with memory. Physica A 392(17), 3610–3621 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Sawada, K., Kotera, T.: A method for finding N-soliton solutions of the KdV equation and KdV-like equation. Prog. Theor. Phys. 51, 1355–1367 (1974)

    Article  MATH  Google Scholar 

  4. Qu, C., Si, Y., Liu, R.: On affine Sawada–Kotera equation. Chaos Solitons Fractals 15, 131–139 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Salas, A.: Some solutions for a type of generalized Sawada–Kotera equation. Appl. Math. Comput. 196, 812–817 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Wazwaz, A.M.: The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations. Appl. Math. Comput. 184, 1002–1014 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Liu, C., Dai, Z.: Exact soliton solutions for the fifth-order Sawada–Kotera equation. Appl. Math. Comput. 206, 272–275 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Iyiola, O.S.: A numerical study of Ito equation and Sawada–Kotera equation both of time-fractional type. Adv. Math. Sci. J. 2(2), 71–79 (2013)

    MathSciNet  Google Scholar 

  9. Saha Ray, S., Sahoo, S.: A novel analytical method with fractional complex transform for new exact solutions of time-fractional fifth-order Sawada–Kotera equation. Rep. Math. Phys. 75, 63 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ablowitz, M.J., Clarkson, P.A.: Solitous, Non-Linear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  11. Hirota, R., Satsuma, J.: Soliton solutions of a coupled Korteweg–de Vries equation. Phys. Lett. A 85(8–9), 407–408 (1981)

    Article  MathSciNet  Google Scholar 

  12. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan, E.: Extended tank-function method and its applications to nonlinear equations. Phys. Lett. A 277(4), 212–218 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yan, C.T.: A simple transformation for nonlinear waves. Phys. Lett. A 224(1–4), 77–84 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ma, W.X., Lee, J.H.: A transformed rational function method and exact solutions to the \(3+1\) dimensional Jim-bo–Miwa equation. Chaos Solitons Fractals 42(3), 1356–1363 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, M., Zhou, Y., Li, Z.: Application of a homogeneous balance method to exact solutions of nonlinearequations in mathematical physics. Phys. Lett. A 216(1), 67–75 (1996)

    Article  MATH  Google Scholar 

  17. Osman, M.S.: Analytical study of rational and double-soliton rational solutions governed by the KdV-Sawada–Kotera–Ramani equation with variable coefficients. Nonlinear Dyn. 89(3), 2283–2289 (2017)

    Article  MathSciNet  Google Scholar 

  18. Osman, M.S., Wazwaz, A.M.: An efficient algorithm to construct multi-soliton rational solutions of the \((2+1)\)-dimensional KdV equation with variable coefficients. Appl. Math. Comput. 321, 282–289 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Osman, M.S.: Nonlinear interaction of solitary waves described by multi-rational wave solutions of the \((2+1)\)-dimensional Kadomtsev–Petviashvili equation with variable coefficients. Nonlinear Dyn. 87(2), 1209–1216 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Osman, M.S.: On complex wave solutions governed by the 2D Ginzburg–Landau equation with variable coefficients. Optik 156, 169–174 (2018)

    Article  Google Scholar 

  21. Osman, M.S.: On multi-soliton solutions for the \((2 + 1)\)-dimensional breaking soliton equation with variable coefficients in a graded-index waveguide. Comput. Math. Appl. 75(1), 1–6 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Osman, M.S., Machado, J.A.T., Baleanu, D.: On nonautonomous complex wave solutions described by the coupled Schrodinger–Boussinesq equation with variable-coefficients. Opt. Quantum Electron. 50, 73 (2018). https://doi.org/10.1007/s11082-018-1346-y

    Article  Google Scholar 

  23. Osman, M.S., Abdel-Gawad, H.I., El-Mahdy, M.A.: Two-layer-atmospheric blocking in a medium with high nonlinearity and lateral dispersion. Results Phys. 8, 1054–1060 (2018)

    Article  Google Scholar 

  24. Liu, C.S.: Trial equation method and its applications to nonlinear evolution equations. Acta Phys. Sin. 54(6), 2505–2509 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Liu, C.S.: Using trial equation method to solve the exact solutions for two kinds of KdV equations with variable coeffi-cients. Acta Phys. Sin. 54(1), 0–4506 (2005)

    MathSciNet  Google Scholar 

  26. Liu, C.S.: Trial equation method to nonlinear evolution equations with rank inhomogenous: mathematical discussions and its applications. Commun. Theor. Phys. 45(2), 219–223 (2006)

    Article  Google Scholar 

  27. Abu Arqub, O.: Series solution of fuzzy differential equations under strongly generalized differentiability. J. Adv. Res. Appl. Math. 5, 31–52 (2013)

    Article  MathSciNet  Google Scholar 

  28. Abu Arqub, O., El-Ajou, A., Bataineh, A., Hashim, I.: A representation of the exact solution of generalized Lane Emden equations using a new analytical method. Abstr. Appl. Anal. 2013, 1–10 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. El-Ajou, A., Abu Arqub, O., Al Zhour, Z., Momani, S.: New results on fractional power series: theories and applications. Entropy 15, 5305–5323 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Alquran, M.: Analytical solutions of time fractional two-component evolutionary system of order 2 by residual power series method. J. Appl. Anal. Comput. 5(4), 589–99 (2015)

    MathSciNet  Google Scholar 

  31. Alquran, M.: Analytical solutions of fractional foam drainage equation by residual power series method. Math. Sci. 8(4), 153–160 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Alquran, M., Al-Khaled, K., Chattopadhyay, J.: Analytical solutions of fractional population diffusion model: residual power series. Nonlinear Stud. 22(1), 31–39 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Jumarie, G.: Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51, 1367–1376 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jumarie, G.: Table of some basic fractional calculus formulae derived from a modified Riemann–Liouville derivative for non-differentiable functions. Appl. Math. Lett. 22(3), 378–385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhao, F., Wang, X.D., Jie, O.: An improved element-free Galerkin method for solving the generalized fifth-order Korteweg–de Vries equation. Chin. Phys. B 22(7), 074704 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usman Afzal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, U., Raza, N. & Murtaza, I.G. On soliton solutions of time fractional form of Sawada–Kotera equation. Nonlinear Dyn 95, 391–405 (2019). https://doi.org/10.1007/s11071-018-4571-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4571-9

Keywords

Navigation