Skip to main content
Log in

Construction of Solitons and Other Wave Solutions for Generalized Kudryashov’s Equation with Truncated M-Fractional Derivative Using Two Analytical Approaches

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In the current work, the modified simplest equation approach and modified \((G'/G^2)\)-expansion approach are implemented to extract soliton solutions and other exact solutions for generalized Kudryashov’s equation with truncated M-fractional derivative. Various types of solutions are extracted such as dark soliton solutions, bright-singular soliton solutions, singular soliton solutions, combo singular solitons solutions, combo dark-singular soliton solutions, periodic solutions and rational solutions. Moreover, to emphasise the impact of truncated M-fractional derivative on the behaviour solutions for the presented problem, the 2D, 3D and contour representations of some obtained solutions are produced. The introduced methods are more reliable, applicability and simple as compared to many other methods to solve the nonlinear fractional partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Mathanaranjan, T., Kumar, D., Rezazadeh, H., Akinyemi, L.: Optical solitons in metamaterials with third and fourth order dispersions. Opt. Quantum Electron. 54(5), 1–15 (2022)

    Article  Google Scholar 

  2. Osman, M.S., Machado, J.A.T., Baleanu, D., Zafar, A., Raheel, M.: On distinctive solitons type solutions for some important nonlinear Schrödinger equations. Opt. Quantum Electron. 53(2), 1–24 (2021)

    Article  Google Scholar 

  3. Zafar, A., Raheel, M., Rezazadeh, H., Inc, M., Akinlar, M.A.: New chirp-free and chirped form optical solitons to the non-linear Schrödinger equation. Opt. Quantum Electron, 53(11), 1–19 (2021)

    Article  Google Scholar 

  4. Zafar, A., Bekir, A., Raheel, M., Razzaq, W.: Optical soliton solutions to Biswas–Arshed model with truncated M-fractional derivative. Optik 222, 165355 (2020)

    Article  ADS  Google Scholar 

  5. Zayed, E.M.E., Alngar, M.E.M., Biswas, A., Asma, M., Ekici, M., Alzahrani, A.K., Belic, M.R.: Optical solitons and conservation laws with generalized Kudryashov’s law of refractive index. Chaos Solitons Fractals 139, 110284 (2020)

    Article  MathSciNet  Google Scholar 

  6. Razzaq, W., Zafar, A., Ahmed, H.M., Rabie, W.B.: Construction solitons for fractional nonlinear Schrödinger equation with \(\beta \)-time derivative by the new sub-equation method. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.06.013

    Article  Google Scholar 

  7. Ahmed, H.M., Rabie, W.B., Ragusa, M.A.: Optical solitons and other solutions to Kaup–Newell equation with Jacobi elliptic function expansion method. Anal. Math. Phys. 11(1), 1–16 (2021)

    Article  MathSciNet  Google Scholar 

  8. Kudryashov, N.A., Biswas, A.: Optical solitons of nonlinear Schrödinger’s equation with arbitrary dual-power law parameters. Optik 252, 168497 (2022)

    Article  CAS  ADS  Google Scholar 

  9. Seadawy, A.R., Ahmed, H.M., Rabie, W.B., Biswas, A.: An alternate pathway to solitons in magneto-optic waveguides with triple-power law nonlinearity. Optik 231, 166480 (2021)

    Article  ADS  Google Scholar 

  10. Rabie, W.B., Ahmed, H.M., Seadawy, A.R., Althobaiti, A.: The higher-order nonlinear Schrödinger’s dynamical equation with fourth-order dispersion and cubic–quintic nonlinearity via dispersive analytical soliton wave solutions. Opt. Quantum Electron. 53(12), 1–25 (2021)

    Article  Google Scholar 

  11. Rabie, W.B., Ahmed, H.M.: Dynamical solitons and other solutions for nonlinear Biswas–Milovic equation with Kudryashov’s law by improved modified extended tanh-function method. Optik 245, 167665 (2021)

    Article  ADS  Google Scholar 

  12. Ekici, M.: Optical solitons with Kudryashov’s quintuple power-law coupled with dual form of non-local law of refractive index with extended Jacobi’s elliptic function. Opt. Quantum Electron. 54(5), 1–15 (2022)

    Article  Google Scholar 

  13. Zafar, A., Raheel, M., Bekir, A., Razzaq, W.: The conformable space–time fractional Fokas–Lenells equation and its optical soliton solutions based on three analytical schemes. Int. J. Mod. Phys. B 35(01), 2150004 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  14. Zafar, A., Raheel, M., Ali, K.K., Razzaq, W.: On optical soliton solutions of new Hamiltonian amplitude equation via Jacobi elliptic functions. Eur. Phys. J. Plus 135(8), 1–7 (2020)

    Article  Google Scholar 

  15. El Sheikh, M., Ahmed, H.M., Arnous, A.H., Rabie, W.B., Biswas, A., Khan, S., Alshomrani, A.S.: Optical solitons with differential group delay for coupled Kundu–Eckhaus equation using extended simplest equation approach. Optik 208, 164051 (2020)

    Article  ADS  Google Scholar 

  16. Yıldırım, Y., Biswas, A., Jawad, A.J.M., Ekici, M., Zhou, Q., Khan, S., Alzahrani, A.K., Belic, M.R.: Cubic–quartic optical solitons in birefringent fibers with four forms of nonlinear refractive index by exp-function expansion. Results Phys. 16, 102913 (2020)

    Article  Google Scholar 

  17. Yusuf, A., Inc, M., Aliyu, A.I., Baleanu, D.: Optical solitons possessing beta derivative of the Chen–Lee–Liu equation in optical fibers. Front. Phys. 7, 34 (2019)

    Article  Google Scholar 

  18. Rehman, H.U., Awan, A.U., Tag-ElDin, E.M., Alhazmi, S.E., Yassen, M.F., Haider, R.: Extended hyperbolic function method for the (2 + 1)-dimensional nonlinear soliton equation. Results Phys. 40, 105802 (2022)

    Article  Google Scholar 

  19. Zhou, Q., Sun, Y., Triki, H., Zhong, Y., Zeng, Z., Mirzazadeh, M.: Study on propagation properties of one-soliton in a multimode fiber with higher-order effects. Results Phys. 41, 105898 (2022)

    Article  Google Scholar 

  20. Rehman, H.U., Ullah, N., Imran, M.A.: Optical solitons of Biswas–Arshed equation in birefringent fibers using extended direct algebraic method. Optik 226, 165378 (2021)

    Article  ADS  Google Scholar 

  21. Rehman, H.U., Awan, A.U., Abro, K.A., Din, E.S.M.T.E., Jafar, S., Galal, A.M.: A non-linear study of optical solitons for Kaup–Newell equation without four-wave mixing. J. King Saud Univ. Sci. 34(5), 102056 (2022)

    Article  Google Scholar 

  22. Rehman, H.U., Ullah, N., Imran, N.A.: Highly dispersive optical solitons using Kudryashov’s method. Optik 199, 163349 (2019)

    Article  ADS  Google Scholar 

  23. Kudryashov, N.A.: A generalized model for description of propagation pulses in optical fiber. Optik 189, 42–52 (2019)

    Article  ADS  Google Scholar 

  24. Zayed, E.M.E., Shohib, R.M.A., Alngar, M.E.M., Biswas, A., Kara, A.H., Dakova, A., Khan, S., Alshehri, H.M., Belic, M.R.: Solitons and conservation laws in magneto-optic waveguides with generalized Kudryashov’s equation by the unified auxiliary equation approach. Optik 245, 167694 (2021)

    Article  ADS  Google Scholar 

  25. Zayed, E.M.E., Alngar, M.E.M.: Optical soliton solutions for the generalized Kudryashov equation of propagation pulse in optical fiber with power nonlinearities by three integration algorithms. Math. Methods Appl. Sci. 44(1), 315–324 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  26. Wang, K.: New fractal soliton solutions for the coupled fractional Klein–Gordon equation with \(\beta \)-fractional derivative. Fractals 31(01), 2350003 (2023)

    Article  ADS  Google Scholar 

  27. Paul, G.C., Kumar, D., Nuruzzaman, M.: Exploring dynamic behaviors of soliton-like pulses in the lossy electrical transmission line model with fractional derivatives: a comparative study. Results Phys. 54, 107039 (2023)

    Article  Google Scholar 

  28. Asghari, Y., Eslami, M., Rezazadeh, H.: Soliton solutions for the time-fractional nonlinear differential-difference equation with conformable derivatives in the ferroelectric materials. Opt. Quantum Electron. 55(4), 289 (2023)

    Article  Google Scholar 

  29. Wang, K.L., Wei, C.F.: Fractal soliton solutions for the fractal-fractional shallow water wave equation arising in ocean engineering. Alex. Eng. J. 65, 859–865 (2023)

    Article  Google Scholar 

  30. Mathanaranjan, T., Vijayakumar, D.: New soliton solutions in nano-fibers with space-time fractional derivatives. Fractals 30(07), 2250141 (2022)

    Article  ADS  Google Scholar 

  31. Raheel, M., Bekir, A., Tariq, K.U., Cevikel, A.: Soliton solutions to the generalized (1 + 1)-dimensional unstable space time-fractional nonlinear Schrödinger model. Opt. Quantum Electron. 54(10), 668 (2022)

    Article  Google Scholar 

  32. Hu, X., Yin, Z.: A study of the pulse propagation with a generalized Kudryashov equation. Chaos Solitons Fractals 161, 112379 (2022)

    Article  MathSciNet  Google Scholar 

  33. Chen, Z., Manafian, J., Raheel, M., Zafar, A., Alsaikhan, F., Abotaleb, M.: Extracting the exact solitons of time-fractional three coupled nonlinear Maccari’s system with complex form via four different methods. Results Phys. 36, 105400 (2022)

    Article  Google Scholar 

  34. Yıldırım, Y., Biswas, A., Ekici, M., Zayed, E.M.E., Alzahrani, A.K., Belic, M.R.: Optical soliton perturbation, with maximum intensity, having generalized Kudryashov’s law of refractive index. Optik 227, 165328 (2021)

    Article  ADS  Google Scholar 

  35. Sulaiman, T.A., Yel, G., Bulut, H.: M-fractional solitons and periodic wave solutions to the Hirota–Maccari system. Mod. Phys. Lett. B 33(05), 1950052 (2019)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  36. Sousa, J.V.D.C., Oliveira, E.C.D.: A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. Int. J. Anal. Appl. 16(1), 83–96 (2018)

    Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

WR: Writing—reviewing, methodology, validation, software. AZ: supervision, writing. HMA: reviewing and editing. WBR: software, writing—reviewing and editing.

Corresponding author

Correspondence to Hamdy M. Ahmed.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razzaq, W., Zafar, A., Ahmed, H.M. et al. Construction of Solitons and Other Wave Solutions for Generalized Kudryashov’s Equation with Truncated M-Fractional Derivative Using Two Analytical Approaches. Int. J. Appl. Comput. Math 10, 21 (2024). https://doi.org/10.1007/s40819-023-01660-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-023-01660-x

Keywords

Navigation