Skip to main content
Log in

Stability analysis of the wake-induced vibration of tandem circular and square cylinders

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We present a stability analysis to investigate the underlying fluid–structure modes during transverse wake-induced vibration (WIV) of an elastically mounted downstream cylinder in a tandem arrangement at low Reynolds number. The upstream cylinder with an equal diameter is kept stationary, whereas the downstream cylinder in the tandem arrangement is free to vibrate in the transverse direction. The WIV involves complex interaction dynamics of the upstream wake with the freely vibrating downstream cylinder, which leads to a relatively large transverse force and vibration in the post-lock-in region. We consider a data-driven model reduction approach to construct an eigenvalue representation of WIV system and perform the stability analysis to examine the underlying process of WIV for the tandem circular and square cylinders. The model reduction of the fluid system is constructed by the eigensystem realization algorithm (ERA) and coupled with a transversely vibrating bluff body in a state-space format. Unlike the wake-oscillator model, the ERA-based ROM does not rely on any empirical formulation and captures naturally the essential linear fluid dynamics through the solution of the Navier–Stokes equations. Results show that the WIV region and the onset reduced velocity can be predicted accurately by tracing the eigenvalue trajectories of the ERA-based low-dimensional model for a range of reduced velocities. The stability analysis reveals that there exists a persistently unstable eigenvalue branch that sustains WIV, which also implies that the highly nonlinear behavior of WIV has its linear origin. The sharp corner of the square cylinder is found to have the stabilizing effects, namely (i) the reduced velocity for the WIV onset is larger than its circular cylinder counterpart, (ii) the transverse response amplitude and the lift force are consistently lesser in both lock-in and post-lock-in regimes for the square cylinder configuration. This work has a potential impact on the development of control strategies for reducing undesired vibrations and loads in flexible structures undergoing wake interference effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Assi, G.R.S., Bearman, P.W., Carmo, B.S., Meneghini, J.R., Sherwin, S.J., Willden, R.H.J.: The role of wake stiffness on the wake-induced vibration of the downstream cylinder of a tandem pair. J. Fluid Mech. 718, 210245 (2013)

    Article  Google Scholar 

  2. Assi, G.R.S., Bearman, P.W., Meneghini, J.R.: On the wake-induced vibration of tandem circular cylinders: the vortex interaction excitation mechanism. J. Fluid Mech. 661, 365401 (2010)

    Article  Google Scholar 

  3. Barkley, D., Henderson, R.D.: Three-dimensional floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241 (1996)

    Article  Google Scholar 

  4. Bearman, P.W.: Circular cylinder wakes and vortex-induced vibrations. J. Fluids Struct. 27(5), 648–658 (2011)

    Article  Google Scholar 

  5. Bernitsas, M.M., Raghavan, K., Ben-Simon, Y., Garcia, E.M.: Vivace (vortex induced vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow. J. Offshore Mech. Arct. Eng. 130(4), 041–101 (2008)

    Article  Google Scholar 

  6. Bokaian, A., Geoola, F.: Wake-induced galloping of two interfering circular cylinders. J. Fluid Mech. 146, 383415 (1984)

    Google Scholar 

  7. Dai, H.L., Abdelkefi, A., Wang, L.: Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations. Nonlinear Dyn. 77(3), 967–981 (2014)

    Article  Google Scholar 

  8. Giannetti, F., Luchini, P.: Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech. 581, 167–197 (2007)

    Article  MathSciNet  Google Scholar 

  9. Hobbs, W.B., Hu, D.L.: Tree-inspired piezoelectric energy harvesting. Journal of Fluids and Structures 28, 103–114 (2012)

    Article  Google Scholar 

  10. Igarashi, T.: Characteristics of the flow around two circular cylinders arranged in tandem: 1st report. Bull. JSME 24(188), 323–331 (1981)

    Article  Google Scholar 

  11. Jaiman, R.K., Geubelle, P., Loth, E., Jiao, X.: Transient fluid–structure interaction with non-matching spatial and temporal discretizations. Comput. Fluids 50, 120–135 (2011)

    Article  MathSciNet  Google Scholar 

  12. Jaiman, R.K., Pillalamarri, N.R., Guan, M.Z.: A stable second-order partitioned iterative scheme for freely vibrating low-mass bluff bodies in a uniform flow. Comput. Methods Appl. Mech. Eng. 301, 187–215 (2016)

    Article  MathSciNet  Google Scholar 

  13. Juang, J.N., Pappa, R.S.: An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guidance 8(5), 620–627 (1985)

    Article  Google Scholar 

  14. Kou, J., Zhang, W., Liu, Y., Li, X.: The lowest Reynolds number of vortex-induced vibrations. Phys. Fluids 29(4), 041–701 (2017)

    Article  Google Scholar 

  15. Li, X., Zhang, W., Gao, C.: Proximity-interference wake-induced vibration at subcritical \(Re\): mechanism analysis using a linear dynamic model. Phys. Fluid 30, 033606 (2018)

    Article  Google Scholar 

  16. Mehmood, A., Nayfeh, A.H., Hajj, M.R.: Effects of a non-linear energy sink (NES) on vortex-induced vibrations of a circular cylinder. Nonlinear Dyn. 77(3), 667–680 (2014)

    Article  Google Scholar 

  17. Meliga, P., Chomaz, J.: An asymptotic expansion for the vortex-induced vibrations of a circular cylinder. J. Fluid Mech. 671, 137–167 (2011)

    Article  MathSciNet  Google Scholar 

  18. Morzyski, M., Noack, B.R., Tadmor, G.: Global flow stability analysis and reduced order modeling for bluff-body flow control. J. Theor. Appl. Mech. 45(3), 621–642 (2007)

    Google Scholar 

  19. Mussa, A., Asinari, P., Luo, L.: Lattice Boltzmann simulations of 2D laminar flows past two tandem cylinders. J. Comput. Phys. 228, 983–999 (2009)

    Article  MathSciNet  Google Scholar 

  20. Mysa, R., Law, Y., Jaiman, R.: Interaction dynamics of upstream vortex with vibrating tandem circular cylinder at subcritical Reynolds number. J. Fluids Struct. 75, 27–44 (2017)

    Article  Google Scholar 

  21. Mysa, R.C., Kaboudian, A., Jaiman, R.K.: On the origin of wake-induced vibration in two tandem circular cylinders at low Reynolds number. J. Fluids Struct. 61, 76–98 (2016)

    Article  Google Scholar 

  22. Noack, B.R., Afanasiev, K., Morzyński, M., Tadmor, G., Thiele, F.: A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335–363 (2003)

    Article  MathSciNet  Google Scholar 

  23. Noack, B.R., Stankiewicz, W., Morzyski, M., Schmid, P.J.: Recursive dynamic mode decomposition of transient and post-transient wake flows. J. Fluid Mech. 809, 843872 (2016)

    Article  MathSciNet  Google Scholar 

  24. Pastoor, M., Henning, L., Noack, B., King, R., Tadmor, G.: Feedback shear layer control for bluff body drag reduction. J. Fluid Mech. 608, 161–196 (2008)

    Article  Google Scholar 

  25. Sarpkaya, T.: A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19(4), 389–447 (2004)

    Article  Google Scholar 

  26. Schatz, M.F., Barkley, D., Swinney, H.L.: Instability in a spatially periodic open flow. Phys. Fluids 7(2), 344–358 (1995)

    Article  Google Scholar 

  27. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010). https://doi.org/10.1017/S0022112010001217

    Article  MathSciNet  MATH  Google Scholar 

  28. Sun, X., Wang, S.Z., Zhang, J.Z., Ye, Z.H.: Bifurcations of vortex-induced vibrations of a fixed membrane wing at \(Re \le 1000\). Nonlinear Dyn. 91(4), 2097–2112 (2018)

    Article  Google Scholar 

  29. Wang, Z., Akhtar, I., Borggaard, J., Iliescu, T.: Two-level discretizations of nonlinear closure models for proper orthogonal decomposition. J. Comput. Phys. 230(1), 126–146 (2011)

    Article  MathSciNet  Google Scholar 

  30. Wang, Z., Akhtar, I., Borggaard, J., Iliescu, T.: Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison. Comput. Methods Appl. Mech. Eng. 237–240, 10–26 (2012)

    Article  MathSciNet  Google Scholar 

  31. Williamson, C.H.K., Govardhan, R.: Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413–455 (2004)

    Article  MathSciNet  Google Scholar 

  32. Williamson, C.H.K., Roshko, A.: Vortex-induced vibrations. J. Fluids Struct. 2, 355–381 (1988)

    Article  Google Scholar 

  33. Yao, W., Jaiman, R.K.: Feedback control of unstable flow and vortex-induced vibration using the eigensystem realization algorithm. J. Fluid Mech. 827, 394414 (2017)

    MathSciNet  Google Scholar 

  34. Yao, W., Jaiman, R.K.: Model reduction and mechanism for the vortex-induced vibrations of bluff bodies. J. Fluid Mech. 827, 357393 (2017)

    MathSciNet  Google Scholar 

  35. Zdravkovich, M.: The effects of interference between circular cylinders in cross flow. J. Fluids Struct. 1(2), 239–261 (1987)

    Article  Google Scholar 

  36. Zhang, W., Li, X., Ye, Z., Jiang, Y.: Mechanism of frequency lock-in in vortex-induced vibrations at low Reynolds numbers. J. Fluid Mech. 783, 72–102 (2015)

    Article  MathSciNet  Google Scholar 

  37. Zhou, Y., Yiu, M.: Flow structure, momentum and heat transport in a two-tandem cylinder wake. J. Fluid Mech. 548, 17–48 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Singapore Maritime Institute through Deepwater Grant SMI-2014-OF-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Jaiman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Appendix A: Fluid-Structure Energy Transfer

Appendix A: Fluid-Structure Energy Transfer

Following our previous work on VIV [34], the displacement and lift coefficient can be obtained for the linear FSI system as:

$$\begin{aligned} \left. \begin{array}{ll} \displaystyle Y={\hat{Y}} e^{\lambda _r t}\cos (\lambda _i t) \\ \displaystyle C_l=\hat{C_l} e^{\lambda _r t}\cos (\lambda _i t + \phi ) \end{array}\right\} , \end{aligned}$$
(A.1)

where \(\lambda =\lambda _r+i\lambda _i\) is eigenvalue with real \(\lambda _r\) and imaginary \(\lambda _i\) components, \({\hat{Y}}\) and \(\hat{C_l}\) denote the magnitudes of eigenmodes. The phase angle difference is derived by plugging Eq. (A.1) into Eq. (12):

$$\begin{aligned} \sin {\phi } = \frac{2\lambda _r\lambda _i}{\sqrt{(\lambda _r^2 + (2\pi F_s)^2 + \lambda _i^2)^2 - (4\pi \lambda _i F_s)^2 }}. \nonumber \\ \end{aligned}$$
(A.2)

Refer to [34] for further details. Next, the energy transfer per cycle is evaluated as:

$$\begin{aligned} \displaystyle E(t)= & {} \int _{t}^{t+\frac{2 \pi }{\lambda _i}} {\dot{Y}} \hat{C_l} \mathrm{d}t \nonumber \\ \displaystyle= & {} \frac{1}{2}(\lambda _i \sin (\phi ) \nonumber \\&+\, \lambda _r \cos (\phi ) + \lambda _r \cos (2 \lambda _i t + \phi )) \int _{t}^{t+\frac{2 \pi }{\lambda _i}} e^{2 \lambda _r t} dt\nonumber \\ \end{aligned}$$
(A.3)

Using Eq. (A.3), the energy transfer coefficient \(E_c\) can be defined by excluding the exponential growth/decay rate \(\lambda _r\)

$$\begin{aligned} E_c = \pi {\hat{Y}} \hat{C_l} \sin (\phi ) \end{aligned}$$
(A.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, W., Jaiman, R.K. Stability analysis of the wake-induced vibration of tandem circular and square cylinders. Nonlinear Dyn 95, 13–28 (2019). https://doi.org/10.1007/s11071-018-4547-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4547-9

Keywords

Navigation