Skip to main content
Log in

Adaptive robust control for dual avoidance–arrival performance for uncertain mechanical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An unprecedented dual avoidance–arrival problem is addressed for uncertain mechanical systems. The concerned system uncertainty is (possibly fast) time-varying but within an unknown bound. The objective is to design a control to simultaneously guarantee two seemingly opposite system performance: avoidance (with respect to a region) and arrival (with respect to another region). This is formulated as an approximate constraint-following control problem, in which formulation, the desired constraint is creatively divided into two categories as the avoidance constraint and the arrival constraint. An adaptive robust control is then put forward under the consideration of the system uncertainty. It is proved that, with the proposed control input, the avoidance constraint is completely followed and the arrival constraint is closely followed; hence, the dual avoidance–arrival problem is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Leitmann, G., Skowronski, J.: Avoidance control. J. Optim. Theory Appl. 23(4), 581–591 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Corless, M., Leitmann, G., Skowronski, J.M.: Adaptive control for avoidance or evasion in an uncertain environment. Comput. Math. Appl. 13(1–3), 1–11 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Corless, M., Leitmann, G.: Adaptive controllers for avoidance or evasion in an uncertain environment: some examples. Comput. Math. Appl. 18(1), 161–170 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Isler, V., Sun, D., Sastry, S.: Roadmap based pursuit-evasion and collision avoidance. Robot. Sci. Syst. 1, 257–264 (2005)

    Google Scholar 

  5. Shen, D., Jia, B., Chen, G., Blasch, E., Pham, K.: Pursuit-evasion games with information uncertainties for elusive orbital maneuver and space object tracking. In: Proceedings of SPIE 9469, Sensors and Systems for Space Applications VIII, p. 94690J. 22 May 2015

  6. Kunwar, F., Benhabib, B.: Rendezvous-guidance trajectory planning for robotic dynamic obstacle avoidance and interception. Syst. Man Cybern. Part B IEEE Trans. Cybern. 36(6), 1432–1441 (2006)

    Article  Google Scholar 

  7. Shen, D., Pham, K., Blasch, E., Chen, H., Chen, G.: Pursuit-evasion orbital game for satellite interception and collision avoidance. In: Proceedings of SPIE 8044, Sensors and Systems for Space Applications IV, p. 80440B. 20 May 2011

  8. Chen, Y.H.: Approximate constraint-following of mechanical systems under uncertainty. Nonlinear Dyn. Syst. Theory 8(4), 329–337 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Udwadia, F.E., Wanichanon, T.: A closed-form approach to tracking control of nonlinear uncertain systems using the fundamental equation. Earth Space 10, 1339–1348 (2012)

    Google Scholar 

  10. Udwadia, F.E., Wanichanon, T.: Control of uncertain nonlinear multibody mechanical systems. Earth Space 81(4), 041020-1–041020-11 (2014)

    Google Scholar 

  11. Wanichanon, T., Cho, H., Udwadia, F.E.: An approach to the dynamics and control of uncertain multi-body systems. Procedia IUTAM 13, 43–52 (2015)

    Article  Google Scholar 

  12. Wang, X., Zhao, H., Sun, Q., Chen, Y.H.: Regulating constraint obedience for fuzzy mechanical systems based on–measure and a general Lyapunov function. IEEE Trans. Fuzzy Syst. 99, 1729–1740 (2016)

    Google Scholar 

  13. Wang, X., Zhao, H., Sun, Q., Chen, Y.H.: A new highorder adaptive robust control for constraint following of mechanical systems. Asian J. Control 19, 1672–1687 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Wang, X., Sun, Q., Chen, Y.H.: Adaptive robust control for triple evasion-tracing-arrival performance of uncertain mechanical systems. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 231(8), 652–668 (2017)

    Article  Google Scholar 

  15. Udwadia, F.E., Kalaba, R.E.: New directions in the control of nonlinear systems. Mech. Control 81–84 (1994). https://doi.org/10.1007/978-1-4615-2425-0_8

    Chapter  MATH  Google Scholar 

  16. Udwadia, F.E.: A new perspective on the tracking control of nonlinear structural and mechanical systems. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 459(2035), 1783–1800 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Udwadia, F.E.: Optimal tracking control of nonlinear dynamical systems. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 464, 23412363 (2008)

    Article  MathSciNet  Google Scholar 

  18. Udwadia, F.E., Prasanth, B.K.: Optimal stable control for nonlinear dynamical systems: an analytical dynamics based approach. Nonlinear Dyn. 82, 547–562 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Udwadia, F.E., Wanichanon, T., Cho, H.: Methodology for satellite formation-keeping in the presence of system uncertainties. J. Guid. Control Dyn. 37(5), 1611–1624 (2014)

    Article  Google Scholar 

  20. Cho, H., Udwadia, F.E.: Explicit control force and torque determination for satellite formation-keeping with attitude requirements. J. Guid. Control Dyn. 26(2), 589–605 (2013)

    Article  Google Scholar 

  21. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  22. Pars, L.A.: A Treatise on Analytical Dynamics. Heinemann, London (1965)

    MATH  Google Scholar 

  23. Rosenberg, R.M.: Analytical Dynamics of Discrete Systems. Plenum, New York (1977)

    Book  MATH  Google Scholar 

  24. Chen, Y.H.: Constraint-following servo control design for mechanical systems. J. Vib. Control 15(3), 369–389 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, Y.H.: A new approach to the control design of fuzzy dynamical systems. J. Dyn. Syst. Meas. Control 133(6), 061019 (2011)

    Article  Google Scholar 

  26. Chen, Y.H.: Performance analysis of controlled uncertain systems. Dyn. Control 6(2), 131–142 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Papastavridis, J.G.: Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems; For Engineers, Physicists, and Mathematicians. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  28. Noble, B., Daniel, J.W.: Applied Linear Algebra. Prentice-Hall, New Jersey (1977)

    MATH  Google Scholar 

  29. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  30. Chen, Y.H.: On the deterministic performance of uncertain dynamical systems. Int. J. Control 43(5), 1557–1579 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  31. Aggarwal, R., Leitmann, G.: Avoidance control. J. Dyn. Syst. Meas. Control 94(2), 152–154 (1972)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuye Wang.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Wang, X. & Chen, YH. Adaptive robust control for dual avoidance–arrival performance for uncertain mechanical systems. Nonlinear Dyn 94, 759–774 (2018). https://doi.org/10.1007/s11071-018-4392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4392-x

Keywords

Navigation