Skip to main content

Positivity Certificates in Optimal Control

  • Chapter
  • First Online:
Geometric and Numerical Foundations of Movements

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 117))

Abstract

We propose a tutorial on relaxations and weak formulations of optimal control with their semidefinite approximations. We present this approach solely through the prism of positivity certificates which we consider to be the most accessible for a broad audience, in particular in the engineering and robotics communities. This simple concept allows us to express very concisely powerful approximation certificates in control. The relevance of this technique is illustrated on three applications: region of attraction approximation, direct optimal control and inverse optimal control, for which it constitutes a common denominator. In a first step, we highlight the core mechanisms underpinning the application of positivity in control and how they appear in the different control applications. This relies on simple mathematical concepts and gives a unified treatment of the applications considered. This presentation is based on the combination and simplification of published materials. In a second step, we describe briefly relations with broader literature, in particular, occupation measures and Hamilton–Jacobi–Bellman equation which are important elements of the global picture. We describe the Sum-Of-Squares (SOS) semidefinite hierarchy in the semialgebraic case and briefly mention its convergence properties. Numerical experiments on a classical example in robotics, namely the nonholonomic vehicle, illustrate the concepts presented in the text for the three applications considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Arechavaleta, J.P. Laumond, H. Hicheur, A. Berthoz, An optimality principle governing human walking. IEEE Trans. Robot. 24(1), 5–14 (2008)

    Article  Google Scholar 

  2. M. Athans, P.L. Falb, Optimal Control. An Introduction to the Theory and Its Applications (McGraw-Hill, New York, 1966)

    MATH  Google Scholar 

  3. M. Bardi, I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations (Springer, Berlin, 2008)

    MATH  Google Scholar 

  4. A. Barvinok, A Course in Convexity (AMS, Providence, 2002)

    Book  MATH  Google Scholar 

  5. R. Beals, B. Gaveau, P.C. Greiner, Hamilton-Jacobi theory and the heat kernel on Heisenberg groups. Journal de mathématiques pures et appliquées 79(7), 633–689 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Chesi, LMI techniques for optimization over polynomials in control: a survey. IEEE Trans. Autom. Control 55(11), 2500–2510 (2010)

    Article  MathSciNet  Google Scholar 

  7. F.C. Chittaro, F. Jean, P. Mason, On inverse optimal control problems of human locomotion: stability and robustness of the minimizers. J. Math. Sci. 195(3), 269–287 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. D. DeVon, T. Bretl, Kinematic and dynamic control of a wheeled mobile robot. IEEE/RSJ Int. Conf. Intell. Robots Syst. (2007)

    Google Scholar 

  9. H.O. Fattorini, Infinite Dimensional Optimization and Control Theory (Cambridge Univ. Press, Cambridge, 1999)

    Book  MATH  Google Scholar 

  10. K. Friston, What is optimal about motor control? Neuron 72(3), 488–498 (2011)

    Article  Google Scholar 

  11. V. Gaitsgory, M. Quincampoix, Linear programming approach to deterministic infinite horizon optimal control problems with discounting. SIAM J. Control Optim. 48(4), 2480–2512 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Henrion, Optimization on Linear Matrix Inequalities for Polynomial Systems Control, Lecture notes of the International Summer School of Automatic Control (Grenoble, France, September 2014)

    Google Scholar 

  13. D. Henrion, A. Garulli (eds.), Positive Polynomials in Control, vol. 312, Lecture Notes on Control and Information Sciences (Springer, Berlin, 2005)

    Google Scholar 

  14. D. Henrion, M. Korda, Convex computation of the region of attraction of polynomial control systems. IEEE Trans. Autom. Control 59(2), 297–312 (2014)

    Article  MathSciNet  Google Scholar 

  15. D. Henrion, J.B. Lasserre, Solving nonconvex optimization problems - how GloptiPoly is applied to problems in robust and nonlinear control. IEEE Control Syst. Mag. 24(3), 72–83 (2004)

    Article  Google Scholar 

  16. D. Hernández-Hernández, O. Hernández-Lerma, M. Taksar, The linear programming approach to deterministic optimal control problems. Applicationes Mathematicae 24(1), 17–33 (1996)

    MathSciNet  MATH  Google Scholar 

  17. J.B. Lasserre, Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. J.B. Lasserre, Moments, Positive Polynomials and Their Applications (Imperial College Press, UK, 2010)

    MATH  Google Scholar 

  19. J.B. Lasserre, D. Henrion, C. Prieur, E. Trélat, Nonlinear optimal control via occupation measures and LMI relaxations. SIAM J. Control Optim. 47(4), 1643–1666 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. J.P. Laumond, N. Mansard, J.B. Lasserre, Optimality in robot motion: optimal versus optimized motion. Commun. ACM 57(9), 82–89 (2014)

    Article  Google Scholar 

  21. J. Löfberg, Pre-and post-processing sum-of-squares programs in practice. IEEE Trans. Autom. Control 54(5), 1007–1011 (2009)

    Article  MathSciNet  Google Scholar 

  22. A. Majumdar, A.A. Ahmadi, R. Tedrake, Control and verification of high-dimensional systems via dsos and sdsos optimization, in Proceedings of the 53rd the IEEE Conference on Decision and Control (2014)

    Google Scholar 

  23. A. Majumdar, R. Vasudevan, M.M. Tobenkin, R. Tedrake, Convex optimization of nonlinear feedback controllers via occupation measures. Int. J. Robot. Res. 33(9), 1209–1230 (2014)

    Article  Google Scholar 

  24. K. Mombaur, A. Truong, J.P. Laumond, From human to humanoid locomotion-an inverse optimal control approach. Auton. Robots 28(3), 369–383 (2010)

    Article  Google Scholar 

  25. P.A. Parrilo, S. Lall, Semidefinite programming relaxations and algebraic optimization in control. Eur. J. Control 9(2–3), 307–321 (2003)

    Article  MATH  Google Scholar 

  26. E. Pauwels, D. Henrion, J.B. Lasserre, Inverse optimal control with polynomial optimization. IEEE Conf. Decis. Control (2014)

    Google Scholar 

  27. E. Pauwels, D. Henrion, J.B. Lasserre, Linear conic optimization for inverse optimal control. SIAM J. Control Optim. 54(3), 1798–1825 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. C. Prieur, Trélat, Robust optimal stabilization of the Brockett integrator via a hybrid feedback. Math. Control, Signals Syst. 17(3), 201–216 (2005)

    Google Scholar 

  29. M. Putinar, Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. A.S. Puydupin-Jamin, M. Johnson, T. Bretl, A convex approach to inverse optimal control and its application to modeling human locomotion. Int. Conf. Robot. Autom. IEEE (2012)

    Google Scholar 

  31. P. Souères, J.P. Laumond, Shortest paths synthesis for a car-like robot. IEEE Trans. Autom. Control 41(5), 672–688 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. E. Todorov, Optimality principles in sensorimotor control. Nat. Neurosci. 7(9), 907–915 (2004)

    Article  Google Scholar 

  33. L. Vandenberghe, S.P. Boyd, Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. R. Vinter, Convex duality and nonlinear optimal control. SIAM J. Control Optim. 31(2), 518–538 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Vinter, R. Lewis, The equivalence of strong and weak formulations for certain problems in optimal control. SIAM J. Control Optim. 16(4), 546–570 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partly supported by project 16-19526S of the Grant Agency of the Czech Republic, project ERC-ADG TAMING 666981,ERC-Advanced Grant of the European Research Council and grant number FA9550-15-1-0500 from the Air Force Office of Scientific Research, Air Force Material Command.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Bernard Lasserre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pauwels, E., Henrion, D., Lasserre, JB. (2017). Positivity Certificates in Optimal Control. In: Laumond, JP., Mansard, N., Lasserre, JB. (eds) Geometric and Numerical Foundations of Movements . Springer Tracts in Advanced Robotics, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-51547-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51547-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51546-5

  • Online ISBN: 978-3-319-51547-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics