Skip to main content
Log in

Local bifurcations of an enzyme-catalyzed reaction system with cubic rate law

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we study the dynamics of a system arising from enzyme-catalyzed reaction. Parameter conditions for the existence and qualitative properties of equilibria are given. Various kinds of bifurcations including saddle-node bifurcation, Bogdanov–Takens bifurcation and Hopf bifurcation are investigated. The order of weak focus is proved to be at most 2, and the parameter conditions of exact order are obtained. Numerical simulations are employed to illustrate the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abhyankar, S.: Local Analytic Geometry. World Scientific, Singapore (2001)

    Book  Google Scholar 

  2. Alexandre, S., Dunford, H.B.: A new model for oscillations in the peroxidase-oxidase reaction. Biophys. Chem. 40, 189–195 (1991)

    Article  Google Scholar 

  3. Chen, J., Huang, J., Ruan, S., Wang, J.: Bifurcations of invariant tori in predator-prey models with seasonal prey harvesting. SIAM J. Appl. Math. 73, 1876–1905 (2013)

    Article  MathSciNet  Google Scholar 

  4. Chen, X., Zhang, W.: Decomposition of algebraic sets and applications to weak centers of cubic systems. J. Comput. Appl. Math. 232, 565–581 (2009)

    Article  MathSciNet  Google Scholar 

  5. Davidson, F., Xu, R., Liu, J.: Existence and uniqueness of limit cycles in an enzyme-catalysed reaction system. Appl. Math. Comput. 127, 165–179 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Erle, D., Mayer, K., Plesser, T.: The existence of stable limit cycles for enzyme catalyzed reactions with positive feedback. Math. Biosci. 44, 191–208 (1979)

    Article  MathSciNet  Google Scholar 

  7. Freire, E., Pizarro, L., Rodríguez-Luis, A., Fernández-Sánchez, F.: Multiparametric bifurcations in an enzyme-catalyzed reaction model. Int. J. Bifurcat. Chaos 15, 905–947 (2004)

    Article  MathSciNet  Google Scholar 

  8. Gelfand, I., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants, and Multidimensional Determinants. Birkhäuser, Boston (1994)

    Book  Google Scholar 

  9. Goldbeter, A., Lefever, R.: Dissipative structures for an allosteric model: application to glycolytic oscillations. Biophys. J. 12, 1302–1315 (1972)

    Article  Google Scholar 

  10. Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  11. Goldbeter, A.: Oscillatory enzyme reactions and Michaelis–Menten kinetics. FEBS Lett. 587, 2778–2784 (2013)

    Article  Google Scholar 

  12. Gray, P., Scott, S.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor. Isolas and other forms of multistability. Chem. Eng. Sci. 38, 29–43 (1983)

    Article  Google Scholar 

  13. Gray, P., Scott, S.: Chemical Oscillations and Instabilities: Nonlinear Chemical Kinetics. Clarendon Press, Oxford (1990)

    Google Scholar 

  14. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  Google Scholar 

  15. Hou, X., Yan, R., Zhang, W.: Bifurcations of a polynomial differential system of degree \(n\) in biochemical reactions. Comput. Math. Appl. 43, 1407–1423 (2002)

    Article  MathSciNet  Google Scholar 

  16. Ko, W.: Bifurcations and asymptotic behavior of positive stead-states of an enzyme-catalysed reaction–diffusion system. Nonlinearity 29, 3777–3809 (2016)

    Article  MathSciNet  Google Scholar 

  17. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences, vol. 112. Springer, New York (1995)

    Book  Google Scholar 

  18. Kwek, K., Zhang, W.: Periodic solutions and dynamics of a multimolecular reaction system. Math. Comput. Model. 36, 189–201 (2002)

    Article  MathSciNet  Google Scholar 

  19. Leng, Z., Gao, B., Wang, Z.: Qualitative analysis of a generalized system of saturated enzyme reactions. Math. Comput. Model. 49, 556–562 (2009)

    Article  MathSciNet  Google Scholar 

  20. Li, Y., Wu, Y.: Stability of traveling front solutions with algebraic spatial decay for some autocatalytic chemical reaction systems. SIAM J. Math. Anal. 44, 1474–1521 (2012)

    Article  MathSciNet  Google Scholar 

  21. Liu, J.: Coordination restriction of enzyme-catalysed reaction systems as nonlinear dynamical systems. Proc. R. Soc. Lond. A 455, 285–298 (1999)

    Article  MathSciNet  Google Scholar 

  22. Merkin, J., Needham, D., Scott, S.: A simple model for sustained oscillations in isothermal branched-chain or autocatalytic reactions in a well stirred open system I. Stationary states and local stabilities. Proc. R. Soc. Lond. A 398, 81–100 (1985)

    Article  MathSciNet  Google Scholar 

  23. Milanowski, P., Carter, T.J., Weber, G.F.: Enzyme catalysis and the outcome of biochemical reactions. J. Proteom. Bioinform. 6, 132–141 (2013)

    Article  Google Scholar 

  24. Olsen, L.F., Degn, H.: Chaos in an enzyme reaction. Nature 267, 177–178 (1977)

    Article  Google Scholar 

  25. Ruan, S., Wang, W.: Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. Differ. Equ. 188, 135–163 (2003)

    Article  MathSciNet  Google Scholar 

  26. Si, W., Zhang, W.: Control exponential growth of tumor cells with slow spread of oncolytic virus. J. Theor. Biol. 367, 111–129 (2015)

    Article  MathSciNet  Google Scholar 

  27. Tang, Y., Zhang, W.: Bogdanov–Takens bifurcation of a polynomial differential system in biochemical reaction. Comput. Math. Appl. 48, 869–883 (2004)

    Article  MathSciNet  Google Scholar 

  28. Thompson, D.R., Larter, R.: Multiple time scale analysis of two models for the peroxidase-oxidase reaction. Chaos 5, 448–457 (1995)

    Article  Google Scholar 

  29. Tracqui, P., Perault-Staub, A., Milhaud, G., Staub, J.: Theoretical study of a two-dimensional autocatalytic model for calcium dynamics at the extracellular fluid-bone interface. Bull. Math. Biol. 49, 597–613 (1987)

    Article  MathSciNet  Google Scholar 

  30. Xiao, D., Ruan, S.: Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response. J. Differ. Equ. 176, 494–510 (2001)

    Article  MathSciNet  Google Scholar 

  31. Zhang, Q., Liu, L., Zhang, W.: Local bifurcations of the enzyme-catalyzed reaction comprising a branched network. Int. J. Bifurcat. Chaos 25, 1550081 (2015)

    Article  MathSciNet  Google Scholar 

  32. Zhang, Q., Liu, L., Zhang, W.: Bogdanov–Takens bifurcations in the enzyme-catalyzed reaction comprising a branched network. Math. Biosci. Eng. 14, 1499–1514 (2017)

    Article  MathSciNet  Google Scholar 

  33. Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative Theory of Differential Equations. American Mathematical Society, Providence (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Su.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Appendix

Appendix

The coefficients \(p_{ijk}\) and \(q_{ijk}\) in (3.6) are as follows

$$\begin{aligned}&p_{100} =(2(\beta -\beta _0))^{-1}(2-\alpha ), \\&p_{200} = \left\{ 4096 {\alpha }^{3}\beta \left( -2+\alpha \right) \left( -1+\alpha \right) ^{7} \left( \beta -\beta _{{0}} \right) ^{2}\right\} ^{-1} \\&\qquad \{{\alpha }^{16}{\beta }^{2}-16 {\alpha }^{15}{\beta }^{2}-16 {\alpha }^{15}\beta \\&\quad -\,144 {\alpha }^{14}{\beta }^{2}+224 {\alpha }^{14}\beta +2880 {\alpha }^{13}{\beta }^{2}\\&\quad -\,256 {\alpha }^{14}+688 {\alpha }^{13} \beta -1440 {\alpha }^{12}{\beta }^{2} \\&\quad +\,3840{\alpha }^{13}-15808{\alpha }^{12}\beta -103680{\alpha }^{11}{\beta }^{2}\\&\quad -\,25600{\alpha }^{ 12}+72000 {\alpha }^{11}\beta \\&\quad +\,99840 {\alpha }^{11}-134144 {\alpha }^{10}\beta -1628928 {\alpha }^{9}{ \beta }^{2}\\&\quad -\,252160 {\alpha }^{10}+1280 {\alpha }^{9}\beta \\&\quad +\,2547968 {\alpha }^{8}{\beta }^{2}+430848 {\alpha }^{9}+521216 {\alpha }^{8} \beta \\&\quad -\,2074624 {\alpha }^{7}{\beta }^{2}-504320 {\alpha }^{8} \\&\quad -\,1205248 {\alpha }^{7}\beta -28672 {\alpha }^{6}{\beta }^{2}+399360 {\alpha }^ {7}\\&\quad +\,1474560 {\alpha }^{6}\beta +2166784 {\alpha }^{5}{\beta }^{2} \\&\quad -\,204800 {\alpha }^{6}-1112064 {\alpha }^{5}\beta -2703360 {\alpha }^{4} {\beta }^{2}\\&\quad +\,61440 {\alpha }^{5}+520192 {\alpha }^{4}\beta \end{aligned}$$
$$\begin{aligned}&\quad +\,1802240 {\alpha }^{3}{\beta }^{2}-8192 {\alpha }^{4}-139264 {\alpha }^{3}\beta \\&\quad -\, 720896 {\alpha }^{2}{\beta }^{2} +16384 {\alpha }^{2}\beta \\&\quad +\,163840 \alpha {\beta }^{2}-16384 {\beta }^{2} +594432 {\alpha }^{10}{\beta }^{2}\}, \\&p_{020} =\{ 16\left( \beta -\beta _{{0}} \right) ^{2} \left( 1-\alpha \right) \}^{-1} \{\alpha \beta \left( 2-\alpha \right) ^{3}\}, \\&p_{002} = \{64\left( \beta -\beta _0 \right) ^{2} \left( 1-\alpha \right) ^{4}\}^{-1} \{\alpha \left( 2-\alpha \right) ^{2} ( -{\alpha }^{5}\\&\quad +\,4 {\alpha }^{4}\beta +6 {\alpha }^{4}-4 {\alpha }^{3}\beta -12 {\alpha }^{3} -12 {\alpha }^{2}\beta \\&\quad +\,8 {\alpha }^{2}+20 \alpha \beta -8 \beta )\}, \\&p_{110} =- \{128\left( \beta -\beta _{{0}} \right) ^{2} \left( 1-\alpha \right) ^{4}\}^{-1} \left( 2-\alpha \right) \{ {\alpha }^{7}\beta \\&\quad -\,8 {\alpha }^{6}\beta -8 {\alpha }^{6}-104 {\alpha }^{5}\beta \\&\quad +\,48 {\alpha }^{5}+608 {\alpha }^{4}\beta -104 {\alpha }^{4}-1264 {\alpha }^{3}\beta \\&\quad +\,96 { \alpha }^{3}+1280 {\alpha }^{2}\beta -32 {\alpha }^{2} \\&\quad -\,640 \alpha \beta +128 \beta \}, \\&p_{101} =-\alpha \{1024 \beta \left( 1-\alpha \right) ^{7} \left( \beta -\beta _0\right) ^{2}\}^{-1} \{ -{\alpha }^{11}\beta \\&\quad +\,8 {\alpha }^{10}{\beta }^{2}+14 {\alpha }^{10}\beta -88 {\alpha }^{9}{\beta }^{2} \\&\quad -\,20 {\alpha }^{9}\beta -616 {\alpha }^{8}{\beta }^{2}+112 {\alpha }^{9}-296 {\alpha }^{8}\beta \\&\quad +\,7160 {\alpha }^{7}{\beta }^{2}-680 {\alpha }^{8}+ 1360 {\alpha }^{7}\beta \\&\quad -\,27136 {\alpha }^{6}{\beta }^{2}+2336 {\alpha }^{7}-1504 {\alpha }^{6}\beta \\&\quad +\,56000 {\alpha }^{5}{\beta }^{2}-4960 { \alpha }^{6}-3712 {\alpha }^{5}\beta \\&\quad -\,71040 {\alpha }^{4}{\beta }^{2}+ 6656 {\alpha }^{5}+14144 {\alpha }^{4}\beta \\&\quad +\,57216 {\alpha }^{3}{ \beta }^{2}-5504 {\alpha }^{4}-20224 {\alpha }^{3}\beta \end{aligned}$$
$$\begin{aligned}&\quad -\,28672 { \alpha }^{2}{\beta }^{2}+2560 {\alpha }^{3}+15360 {\alpha }^{2}\beta \\&\quad +\, 8192 \alpha {\beta }^{2}-512 {\alpha }^{2}-6144 \alpha \beta \\&\quad -\,1024 {\beta }^{2}+1024 \beta -8 {\alpha }^{10}\}, \\&p_{011} = \{ 64\left( \beta -\beta _{{0}} \right) ^{2} \left( 1-\alpha \right) ^{4}\}^{-1} {\alpha }^{2} \left( 2-\alpha \right) ^{2}\\&\qquad ( -{\alpha }^{4}+8 {\alpha }^{3}\beta +6 {\alpha }^{3}-24 {\alpha }^{2}\beta \\&\quad -\,12 {\alpha }^{2}+24 \alpha \beta +8 \alpha -8 \beta ), \\&q_{200} = \{4096 \left( -1+\alpha \right) ^{8} \left( -2+\alpha \right) ^{4}{\alpha }^{4} \left( \beta -\beta _{{0}} \right) ^{2}\}^{-1} \\&\qquad \{{\alpha }^{20}\beta -16 {\alpha }^{19}{\beta }^{2}-18 {\alpha }^{19} \beta \\&\quad +\,304 {\alpha }^{18}{\beta }^{2}+64 {\alpha }^{19}+396 {\alpha }^ {18}\beta \\&\quad +\,1424 {\alpha }^{17}{\beta }^{2}-1344 {\alpha }^{18}-7256 { \alpha }^{17}\beta \\&\quad -\,55216 {\alpha }^{16}{\beta }^{2}+12864 {\alpha }^{ 17}+26784 {\alpha }^{16}\beta \\&\quad +\,241600 {\alpha }^{15}{\beta }^{2}-74176 {\alpha }^{16} \\&\quad +\,332480 {\alpha }^{15}\beta +1289408 {\alpha }^{14}{ \beta }^{2}\\&\quad +\,286848 {\alpha }^{15}-4249472 {\alpha }^{14}\beta \\&\quad -\,18083456 {\alpha }^{13}{\beta }^{2}-783360 {\alpha }^{14}\\&\quad +\,23816960 { \alpha }^{13}\beta +94664960 {\alpha }^{12}{\beta }^{2} \end{aligned}$$
$$\begin{aligned}&\quad +\,1548288 { \alpha }^{13}-84614656 {\alpha }^{12}\beta \\&\quad -\,309469696 {\alpha }^{11}{ \beta }^{2}-2230272 {\alpha }^{12} \\&\quad +\,212044288 {\alpha }^{11}\beta + 714576896 {\alpha }^{10}{\beta }^{2}\\&\quad +\,2322432 {\alpha }^{11}-393525248 {\alpha }^{10}\beta \\&\quad -\,1228421120 {\alpha }^{9}{\beta }^{2}-1703936 { \alpha }^{10}\\&\quad +\,554510336 {\alpha }^{9}\beta +1613713408 {\alpha }^{8}{ \beta }^{2} \\&\quad +\,835584 {\alpha }^{9}-600182784 {\alpha }^{8}\beta \\&\quad - \,1639047168 {\alpha }^{7}{\beta }^{2}-245760 {\alpha }^{8} \\&\quad +\,500023296 { \alpha }^{7}\beta +1289404416 {\alpha }^{6}{\beta }^{2}\\&\quad +\,32768 {\alpha } ^{7}-318521344 {\alpha }^{6}\beta \\&\quad -\,779911168 {\alpha }^{5}{\beta }^{2} +152567808 {\alpha }^{5}\beta \\&\quad +\,356384768 {\alpha }^{4}{\beta }^{2}- 53264384 {\alpha }^{4}\beta \\&\quad -\,119144448 {\alpha }^{3}{\beta }^{2}+ 12812288 {\alpha }^{3}\beta \\&\quad +\,27525120 {\alpha }^{2}{\beta }^{2}- 1900544 {\alpha }^{2}\beta \\&\quad -\,3932160 \alpha {\beta }^{2}+131072 \alpha \beta +262144 {\beta }^{2} \}, \\&q_{020} ={\beta } \{16\alpha \left( 1-\alpha \right) ^{2} \left( 2-\alpha \right) \left( \beta -\beta _{{0}} \right) ^{2}\}^{-1}\\&\qquad ( -{\alpha }^{6}+16 {\alpha }^{5}\beta +4 {\alpha }^{5}-80 {\alpha }^{4}\beta \\&\quad +\,208 {\alpha }^{3}\beta -16 {\alpha }^{3}-304 { \alpha }^{2}\beta \\&\quad +\,16 {\alpha }^{2}+224 \alpha \beta -64 \beta ), \end{aligned}$$
$$\begin{aligned}&q_{002} =-\{128 \alpha \left( \beta -\beta _{{0}} \right) ^{2} \left( 1-\alpha \right) ^{5}\}^{-1} \\&\qquad \{ {\alpha }^{10}-8 {\alpha }^{9}+8 {\alpha }^{8}\beta -128 {\alpha }^{7}{ \beta }^{2}+20 {\alpha }^{8} \\&\quad +\,512 {\alpha }^{6}{\beta }^{2}+712 {\alpha }^{6}\beta -384 {\alpha }^{5}{\beta }^{2}-80 {\alpha }^{6}\\&\quad -\,1720 {\alpha }^{5}\beta -1280 {\alpha }^{4}{\beta }^{2} +128 {\alpha }^{5} \\&\quad +\,2128 {\alpha }^{4}\beta +3200 {\alpha }^{3}{\beta } ^{2}\\&\quad -\,64 {\alpha }^{4}-1312 {\alpha }^{3}\beta \\&\quad -\,3072 {\alpha }^{2}{ \beta }^{2}+320 {\alpha }^{2}\beta -256 {\beta }^{2} \\&\quad -\,136 {\alpha }^{7}\beta +1408 \alpha {\beta }^{2} \}, \\&q_{110} =\{128{\alpha }^{3} \left( \beta -\beta _{{0}} \right) ^{2} \left( -1+\alpha \right) ^{5}\left( -2+\alpha \right) ^{3}\}^{-1} \\&\qquad \{ {\alpha }^{14}\beta -16 {\alpha }^{13}{\beta }^{2}-12 {\alpha }^{13}\beta +32 {\alpha }^{13} \\&\quad +\,208 {\alpha }^{12}{\beta }^{2}+184 {\alpha }^ {12}\beta \\&\quad +\,816 {\alpha }^{11}{\beta }^{2}-480 {\alpha }^{12}\\&\quad -\,2672 { \alpha }^{11}\beta -18128 {\alpha }^{10}{\beta }^{2} \\&\quad +\,3168 {\alpha }^{11} +20352 {\alpha }^{10}\beta +108320 {\alpha }^{9}{\beta }^{2}\\&\quad -\,12064 { \alpha }^{10}-88384 {\alpha }^{9}\beta -376128 {\alpha }^{8}{\beta }^{2} \\&\quad +\,29184 {\alpha }^{9}+240128 {\alpha }^{8}\beta +878080 {\alpha }^{7}{ \beta }^{2}\\&\quad -\,46464 {\alpha }^{8}-429312 {\alpha }^{7}\beta \\&\quad +\,48640 {\alpha }^{7}+514944 {\alpha }^{6}\beta +1714688 {\alpha }^{5}{\beta }^{2}\\&\quad -\,32256 {\alpha }^{6}-411392 {\alpha }^{5}\beta \end{aligned}$$
$$\begin{aligned}&\quad +\,12288 {\alpha }^{5} +210432 {\alpha }^{4}\beta \\&\quad +\,854016 {\alpha }^{3}{\beta }^{2}-2048 { \alpha }^{4}\\&\quad -\,62464 {\alpha }^{3}\beta -333824 {\alpha }^{2}{\beta }^{2} \\&\quad +\,8192 {\alpha }^{2}\beta +77824 \alpha {\beta }^{2}-8192 {\beta }^{2} \\&\quad -\,1448704 {\alpha }^{6}{\beta }^{2} -1448960 {\alpha }^{4}{\beta }^{2} \}, \\&q_{101} =\{2048 {\alpha }^{2}\beta \left( -1+\alpha \right) ^{8} \left( \beta -\beta _{{0}} \right) ^{2} \left( -2+\alpha \right) ^{3}\}^{-1} \\&\qquad \{{\alpha }^{18}\beta -18 {\alpha }^{17}\beta +16 {\alpha }^{16}{\beta }^{2} \\&\quad -\,256 {\alpha }^{15}{\beta }^{3}+16 {\alpha }^{17}+12 {\alpha }^{16} \beta -336 {\alpha }^{15}{\beta }^{2}\\&\quad +\,3840 {\alpha }^{14}{\beta }^{3}- 336 {\alpha }^{16}+1448 {\alpha }^{15}\beta \\&\quad +\,5200 {\alpha }^{14}{\beta }^{2}+6912 {\alpha }^{13}{\beta }^{3}+3216 {\alpha }^{15}\\&\quad -\,12768 {\alpha }^{14}\beta -48176 {\alpha }^{13}{\beta }^{2}-322816 {\alpha }^{12}{\beta }^{3} \\&\quad -\,18544 {\alpha }^{14}+53184 {\alpha }^{13}\beta + 272352 {\alpha }^{12}{\beta }^{2}\\&\quad +\,2284800 {\alpha }^{11}{\beta }^{3}+ 71712 {\alpha }^{13} -119808 {\alpha }^{12}\beta \\&\quad -\,1011008 {\alpha }^{11 }{\beta }^{2}-8878848 {\alpha }^{10}{\beta }^{3}\\&\quad -\,195840 {\alpha }^{12} +102144 {\alpha }^{11}\beta \\&\quad +\,2602880 {\alpha }^{10}{\beta }^{2}+ 22796544 {\alpha }^{9}{\beta }^{3}+387072 {\alpha }^{11}\\&\quad +\,217216 { \alpha }^{10}\beta -4808448 {\alpha }^{9}{\beta }^{2} \\&\quad -\,41598720 {\alpha }^{8}{\beta }^{3}-557568 {\alpha }^{10}-896256 {\alpha }^{9}\beta \\&\quad + \,6490624 {\alpha }^{8}{\beta }^{2}+55869440 {\alpha }^{7}{\beta }^{3} \end{aligned}$$
$$\begin{aligned}&\quad +\,580608 {\alpha }^{9}+1559040 {\alpha }^{8}\beta -6433792 {\alpha }^{7} {\beta }^{2}\\&\quad -\,56080384 {\alpha }^{6}{\beta }^{3}-425984 {\alpha }^{8} \\&\quad -\,1672192 {\alpha }^{7}\beta +4644864 {\alpha }^{6}{\beta }^{2}\\&\quad +\,42135552 {\alpha }^{5}{\beta }^{3}+208896 {\alpha }^{7}+1173504 {\alpha }^{6}\beta \\&\quad -\,2381824 {\alpha }^{5}{\beta }^{2}-23425024 {\alpha }^{4}{\beta }^{3}\\&\quad -\,61440 {\alpha }^{6}-528384 {\alpha }^{5}\beta +823296 {\alpha }^ {4}{\beta }^{2} \\&\quad +\,9371648 {\alpha }^{3}{\beta }^{3}+8192 {\alpha }^{5}+ 139264 {\alpha }^{4}\beta \\&\quad -\,172032 {\alpha }^{3}{\beta }^{2}-2555904 { \alpha }^{2}{\beta }^{3} \\&\quad -\,16384 {\alpha }^{3}\beta +16384 {\alpha }^{2}{ \beta }^{2}\\&\quad +\,425984 \alpha {\beta }^{3}-32768 {\beta }^{3} \}, \\&q_{011} = \{128 \left( \beta -\beta _{{0}} \right) ^{2} \left( -1+\alpha \right) ^{5} \left( -2+\alpha \right) \}^{-1} \\&\qquad \{ {\alpha }^{10}-10 {\alpha }^{9}+16 {\alpha }^{8}\beta -256 {\alpha }^{7 }{\beta }^{2} \\&\quad +\,36 {\alpha }^{8}-208 {\alpha }^{7}\beta +1792 {\alpha }^ {6}{\beta }^{2}-40 {\alpha }^{7}\\&\quad +\,1104 {\alpha }^{6}\beta -5376 { \alpha }^{5}{\beta }^{2}-80 {\alpha }^{6} \\&\quad -\,3120 {\alpha }^{5}\beta +8960 {\alpha }^{4}{\beta }^{2}+288 {\alpha }^{5}+5088 {\alpha }^{4}\beta \\&\quad - \,8960 {\alpha }^{3}{\beta }^{2}-320 {\alpha }^{4}-4800 {\alpha }^{3}\beta \\&\quad +\,5376 {\alpha }^{2}{\beta }^{2}+128 {\alpha }^{3}+2432 {\alpha } ^{2}\beta \\&\quad -\,1792 \alpha {\beta }^{2}-512 \alpha \beta +256 {\beta }^{2} \}. \end{aligned}$$

The coefficients \(g_{ij}\) s in (3.13) are as follows

$$\begin{aligned}&g_{00}(\epsilon _1,\epsilon _2)=- \{4(1-\alpha )^{2} ( {\alpha }^{3}-4 {\alpha }^{2}\epsilon _2-2 {\alpha }^{2}\\&\quad +\,8 \alpha \epsilon _2-4 \epsilon _2 )^{2}\}^{-1} \{{\alpha }^{3}\epsilon _2 (2-\alpha ) ( {\alpha }^{5} \\&\quad -\,6 {\alpha }^{4}+16 {\alpha }^{3}\epsilon _1+12 {\alpha }^{3}-48 {\alpha }^{2}\epsilon _1\\&\quad -\,8 {\alpha }^{2}+48 \alpha \epsilon _1-16 \epsilon _1 ) \}, \\&g_{10}(\epsilon _1,\epsilon _2)=-\{32 (1-\alpha ) ^{4} ( {\alpha }^{3}-4 {\alpha }^{2} \epsilon _2-2 {\alpha }^{2}\\&\quad +\,8 \alpha \epsilon _2-4 \epsilon _2 )\}^{-1} \{\epsilon _2 ( {\alpha }^{4}-4 {\alpha }^{3}\epsilon _2 \\&\quad -\,2 {\alpha }^{3}+24 {\alpha }^{2}\epsilon _2-36 \alpha \epsilon _2+16 \epsilon _2)( {\alpha }^{5}-6 {\alpha }^{4}\\&\quad +16 {\alpha }^{3} \epsilon _1+12 {\alpha }^{3}-48 {\alpha }^{2}\epsilon _1 \\&\quad -\,8 {\alpha }^{2}+48 \alpha \epsilon _1-16 \epsilon _1 )\} ,\\&g_{01}(\epsilon _1,\epsilon _2)= -\{(1-\alpha ) (2-\alpha ) ( {\alpha }^{3}-4 {\alpha }^{2}\epsilon _2-2 {\alpha }^{2}\\&\quad +\,8 \alpha \epsilon _2-4 \epsilon _2 ) \}^{-1} \{2({\alpha }^{5}\epsilon _2-{\alpha }^{4}{\epsilon _2}^{2} \end{aligned}$$
$$\begin{aligned}&\quad +\,{\alpha }^{4}\epsilon _1-6 {\alpha }^{4}\epsilon _2+8 {\alpha }^{3}\epsilon _1\epsilon _2+6 {\alpha }^{3}{\epsilon _2}^{2}\\&\quad -\,3 {\alpha }^{ 3}\epsilon _1+12 {\alpha }^{3}\epsilon _2-24 {\alpha }^{2} \epsilon _1\epsilon _2 \\&\quad -\,13 {\alpha }^{2}\epsilon _2^2+2 {\alpha }^{2}\epsilon _1-8 {\alpha }^{2}\epsilon _2+24 \alpha \epsilon _1\epsilon _2\\&\quad +\,12 \alpha \epsilon _2^{2}-8 \epsilon _1\epsilon _2-4 \epsilon _2^{2}) \}, \\&g_{20}(\epsilon _1,\epsilon _2)=\{1024 \alpha (1-\alpha ) ^{7}\}^{-1} ({\alpha }^{7}-8 {\alpha }^{6}\epsilon _2\\&\quad +\,16 {\alpha }^{5}\epsilon _2^{2}-6 {\alpha }^{6}+32 {\alpha }^{5}\epsilon _2-32 {\alpha }^ {4}\epsilon _2^{2} \\&\quad +\,12 {\alpha }^{5}-56 {\alpha }^{4}\epsilon _2-32 {\alpha }^{3}\epsilon _2^{2}-8 {\alpha }^{4}+64 {\alpha }^{3 }\epsilon _2\\&\quad +\,128 {\alpha }^{2}\epsilon _2^{2}-32 {\alpha }^{2}\epsilon _2 +32 \epsilon _2^2 \\&\quad -\,112 \alpha \epsilon _2^{2}) ({\alpha }^{5}-6 {\alpha }^{4}+16 {\alpha }^{3}\epsilon _1+12 { \alpha }^{3}\\&\quad -\,48 {\alpha }^{2}\epsilon _1-8 {\alpha }^{2}+48 \alpha \epsilon _1-16 \epsilon _1), \\&g_{11}(\epsilon _1,\epsilon _2)=-\{64 {\alpha }^{2} (2-\alpha ) ^{2} (1-\alpha )^{5}\}^{-1} ( {\alpha }^{12}\\&\quad -\,2 {\alpha }^{11}\epsilon _2-8 {\alpha }^{10}{\epsilon _2}^{2}-10 {\alpha }^{11}+16 {\alpha }^{10}\epsilon _1 \\&\quad +\,12 {\alpha }^{10}\epsilon _2-32 {\alpha }^{9}\epsilon _1\epsilon _{{2} }+112 {\alpha }^{9}\epsilon _2^{2}\\&\quad -\,128 {\alpha }^{8}\epsilon _{{1} }\epsilon _2^{2}-64 {\alpha }^{8}\epsilon _2^{3}+42 {\alpha }^{10}-256 \epsilon _2^3 \end{aligned}$$
$$\begin{aligned}&\quad -\,128 {\alpha }^{9}\epsilon _1-2 {\alpha }^{9}\epsilon _2+ 288 {\alpha }^{8}\epsilon _1\epsilon _2-624 {\alpha }^{8}{ \epsilon _2}^{2}\\&\quad +\,640 {\alpha }^{7}\epsilon _1\epsilon _2^{2 }+640 {\alpha }^{7}\epsilon _2^{3} \\&\quad -\,100 {\alpha }^{9}+416 {\alpha }^{8}\epsilon _1-152 {\alpha }^{8}\epsilon _2\\&\quad -\,832 {\alpha }^{7} \epsilon _1\epsilon _2+1792 {\alpha }^{7}\epsilon _2^{2}- 896 {\alpha }^{6}\epsilon _1\epsilon _2^{2} \\&\quad -\,2752 {\alpha }^{6}\epsilon _2^{3}+160 {\alpha }^{8}-704 {\alpha }^{7}\epsilon _1 \\&\quad +\,496 {\alpha }^{7}\epsilon _2+448 {\alpha }^{6}\epsilon _1 \epsilon _2-2760 {\alpha }^{6}\epsilon _2^{2} \\&\quad -\,896 {\alpha }^{5}\epsilon _1\epsilon _2^{2}+6656 {\alpha }^{5}\epsilon _2 ^{3}-192 {\alpha }^{7}\\&\quad +\,656 {\alpha }^{6}\epsilon _1-704 {\alpha }^{ 6}\epsilon _2+2400 {\alpha }^{5}\epsilon _1\epsilon _2 \\&\quad +\,1872{\alpha }^{5}\epsilon _2^{2}+4480 {\alpha }^{4}\epsilon _1\epsilon _2^{2}-9920 {\alpha }^{4}\epsilon _2^{3}\\&\quad +\,160 { \alpha }^{6}-320 {\alpha }^{5}\epsilon _1+480 {\alpha }^{5}\epsilon _2 \\&\quad -\,5728 {\alpha }^{4}\epsilon _1\epsilon _2+512 {\alpha }^{4} \epsilon _2^{2}-6272 {\alpha }^{3}\epsilon _1\epsilon _2^ {2}\\&\quad +\,9344 {\alpha }^{3}\epsilon _2^{3}+64 {\alpha }^{4}\epsilon _1 +256 \epsilon _1\epsilon _2^{2} \\&\quad -\,64 {\alpha }^{5} -128 {\alpha }^{4}\epsilon _2+5632 { \alpha }^{3}\epsilon _1\epsilon _2\\&\quad -\,1792 {\alpha }^{3}\epsilon _2^{2}+4480 {\alpha }^{2}\epsilon _1\epsilon _2^{2}-5440 { \alpha }^{2}\epsilon _2^{3} \end{aligned}$$
$$\begin{aligned}&\quad -\,2688 {\alpha }^{2}\epsilon _1 \epsilon _2+1152 {\alpha }^{2}\epsilon _2^{2}-1664 \alpha \epsilon _1\epsilon _2^{2}\\&\quad +\,1792 \alpha \epsilon _2^{3}+ 512 \alpha \epsilon _1\epsilon _2-256 \alpha \epsilon _2^{2}), \\&g_{02}(\epsilon _1,\epsilon _2)= -\{16 {\alpha }^{2} (2-\alpha )^{3} (1-\alpha )\}^{-1} ( {\alpha }^{8}+4\alpha ^{7}\epsilon _2\\&\quad -\,6\alpha ^{7}+16 {\alpha }^{6}\epsilon _1-36\alpha ^{6}\epsilon _2 \\&\quad +\,64\alpha ^{5}\epsilon _1\epsilon _2+32\alpha ^{5}\epsilon _2^{2}+8 { \alpha }^{6}-80\alpha ^{5}\epsilon _1+112\alpha ^{5}\epsilon _2\\&\quad -\,128\alpha ^{4}\epsilon _1\epsilon _2-224\alpha ^{4}\epsilon _2^{2} \\&\quad +\,16\alpha ^{5}+48\alpha ^{4}\epsilon _1- 112\alpha ^{4}\epsilon _2\\&\quad -\,128\alpha ^{3}\epsilon _1 \epsilon _2+608\alpha ^{3}\epsilon _2^{2}-48\alpha ^{4}+ 272\alpha ^{3}\epsilon _1 \\&\quad -\,96\alpha ^{3}\epsilon _2+512 { \alpha }^{2}\epsilon _1\epsilon _2-800\alpha ^{2}\epsilon _2^{2}\\&\quad +\,32\alpha ^{3}-448\alpha ^{2}\epsilon _1+256\alpha ^{2}\epsilon _2-128 \epsilon _2^{2} \\&\quad -\,448 \alpha \epsilon _1\epsilon _2+512 \alpha \epsilon _2^{2}+192 \alpha \epsilon _1\\&\quad -\,128 \alpha \epsilon _2+128 \epsilon _1\epsilon _2 ). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Xu, B. Local bifurcations of an enzyme-catalyzed reaction system with cubic rate law. Nonlinear Dyn 94, 521–539 (2018). https://doi.org/10.1007/s11071-018-4375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4375-y

Keywords

Mathematics Subject Classification

Navigation