Skip to main content
Log in

Residual symmetry, Bäcklund transformation and CRE solvability of a (\(\mathbf{2}{\varvec{+}}{} \mathbf{1}\))-dimensional nonlinear system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the truncated Painlevé expansion is employed to derive a Bäcklund transformation of a (\(2+1\))-dimensional nonlinear system. This system can be considered as a generalization of the sine-Gordon equation to \(2+1\) dimensions. The residual symmetry is presented, which can be localized to the Lie point symmetry by introducing a prolonged system. The multiple residual symmetries and the nth Bäcklund transformation in terms of determinant are obtained. Based on the Bäcklund transformation from the truncated Painlevé expansion, lump and lump-type solutions of this system are constructed. Lump wave can be regarded as one kind of rogue wave. It is proved that this system is integrable in the sense of the consistent Riccati expansion (CRE) method. The solitary wave and soliton–cnoidal wave solutions are explicitly given by means of the Bäcklund transformation derived from the CRE method. The dynamical characteristics of lump solutions, lump-type solutions and soliton–cnoidal wave solutions are discussed through the graphical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Stojanovic, V., Nedic, N.: Joint state and parameter robust estimation of stochastic nonlinear systems. Int. J. Robust. Nonlinear 26(14), 3058–3074 (2016)

    Article  MathSciNet  Google Scholar 

  2. Filipovic, V., Nedic, N., Stojanovic, V.: Robust identification of pneumatic servo actuators in the real situations. Forsch Ing. 75(4), 183–196 (2011)

    Article  Google Scholar 

  3. Stojanovic, V., Nedic, N.: Robust identification of OE model with constrained output using optimal input design. J. Frankl. I 353(2), 576–593 (2016)

    Article  MathSciNet  Google Scholar 

  4. Stojanovic, V., Nedic, N.: Identification of time-varying OE models in presence of non-Gaussian noise: application to pneumatic servo drives. Int. J. Robust. Nonlinear 26(18), 3974–3995 (2016)

    Article  MathSciNet  Google Scholar 

  5. Olver, P.J.: Application of Lie Groups to Differential Equations. Springer, Berlin (1993)

    Book  Google Scholar 

  6. Bluman, G.W., Anco, S.C.: Symmetry and Itegration Methods for Differential Equations. Springer, Berlin (2002)

    MATH  Google Scholar 

  7. Bluman, G.W., Cheviakov, A.F., Anco, S.C.: Applications of Symmetry Methods to Partial Differential Equations. Springer, Berlin (2010)

    Book  Google Scholar 

  8. Ibragimov, N.H.: A Practical Course in Differential Equations and Mathematical Modelling. World Scientific Publishing Co Pvt Ltd, Singapore (2009)

    Book  Google Scholar 

  9. Chaolu, T., Bluman, G.W.: An algorithmic method for showing existence of nontrivial non-classical symmetries of partial differential equations without solving determining equations. J. Math. Anal. Appl. 411(1), 281–296 (2014)

    Article  MathSciNet  Google Scholar 

  10. Grigoriev, Y.N., Ibragimov, N.H., Kovalev, V.F., Meleshko, S.V.: Symmmetry of Integro-Differential Equations: with Applications in Mechanics and Plasma Physica. Springer, Berlin (2010)

    Book  Google Scholar 

  11. Bluman, G.W., Cheviakov, A.F., Ivanova, N.M.: Framework for nonlocally related partial differential equation systems and nonlocal symmetries: extension, simplification, and examples. J. Math. Phys. 47(11), 113505 (2006)

    Article  MathSciNet  Google Scholar 

  12. Bluman, G.W., Yang, Z.Z.: A symmetry-based method for constructing nonlocally related partial differential equation systems. J. Math. Phys. 54(9), 093504 (2013)

    Article  MathSciNet  Google Scholar 

  13. Lou, S.Y., Hu, X.B.: Non-local symmetries via Darboux transformations. J. Phys. A Math. Gen. 30(5), L95 (1997)

    Article  MathSciNet  Google Scholar 

  14. Hu, X.R., Lou, S.Y., Chen, Y.: Explicit solutions from eigenfunction symmetry of the Korteweg-de Vries equation. Phys. Rev. E 85, 056607 (2012)

    Article  Google Scholar 

  15. Lou, S.Y., Hu, X.R., Chen, Y.: Nonlocal symmetries related to Bäcklund transformation and their applications. J. Phys. A Math. Theor. 45(15), 155209 (2012)

    Article  Google Scholar 

  16. Chen, J.C., Xin, X.P., Chen, Y.: Nonlocal symmetries of the Hirota-Satsuma coupled Korteweg-de Vries system and their applications: exact interaction solutions and integrable hierarchy. J. Math. Phys. 55(5), 053508 (2014)

    Article  MathSciNet  Google Scholar 

  17. Wazwaz, A.M.: Painlevé analysis for a new integrable equation combining the modified Calogero–Bogoyavlenskii–Schiff (MCBS) equation with its negative-order form. Nonlinear Dyn. 91(2), 877–883 (2018)

    Article  Google Scholar 

  18. Wazwaz, A.M., Xu, G.Q.: An extended modified KdV equation and its Painlevé integrability. Nonlinear Dyn. 86(3), 1455–1460 (2016)

    Article  Google Scholar 

  19. Wazwaz, A.M., Xu, G.Q.: Modified Kadomtsev–Petviashvili equation in (3 + 1) dimensions: multiple front-wave solutions. Commun. Theor. Phys. 63, 727–730 (2015)

    Article  MathSciNet  Google Scholar 

  20. Lou, S.Y.: Residual symmetries and Bäcklund transformations. arXiv:1308.1140v1 (2013)

  21. Lou, S.Y.: Consistent Riccati expansion for integrable systems. Stud. Appl. Math. 134(3), 372–402 (2015)

    Article  MathSciNet  Google Scholar 

  22. Zhao, Z.L., Han, B.: Lie symmetry analysis of the Heisenberg equation. Commun. Nonlinear Sci. Numer. Simul. 45, 220–234 (2017)

    Article  MathSciNet  Google Scholar 

  23. Zhao, Z.L., Han, B.: On symmetry analysis and conservation laws of the AKNS system. Z. Naturforsch. A 71, 741–750 (2016)

    Google Scholar 

  24. Zhao, Z.L., Han, B.: On optimal system, exact solutions and conservation laws of the Broer–Kaup system. Eur. Phys. J. Plus 130(11), 1–15 (2015)

    Article  Google Scholar 

  25. Chen, J.C., Ma, Z.Y.: Consistent Riccati expansion solvability and soliton-cnoidal wave interaction solution of a (2 + 1)-dimensional Korteweg-de Vries equation. Appl. Math. Lett. 64, 87–93 (2017)

    Article  MathSciNet  Google Scholar 

  26. Zhao, Z.L., Han, B.: The Riemann–Bäcklund method to a quasiperiodic wave solvable generalized variable coefficient (2 + 1)-dimensional KdV equation. Nonlinear Dyn. 87(4), 2661–2676 (2017)

    Article  MathSciNet  Google Scholar 

  27. Chen, J.C., Wu, H.L., Zhu, Q.Y.: Bäcklund transformation and soliton-cnoidal wave interaction solution for the coupled Klein–Gordon equations. Nonlinear Dyn. 91(3), 1949–1961 (2018)

    Article  Google Scholar 

  28. Hu, X.R., Li, Y.Q.: Nonlocal symmetry and soliton-cnoidal wave solutions of the Bogoyavlenskii coupled KdV system. Appl. Math. Lett. 51, 20–26 (2016)

    Article  MathSciNet  Google Scholar 

  29. Song, J.F., Hu, Y.H., Ma, Z.Y.: Bäcklund transformation and CRE solvability for the negative-order modified KdV equation. Nonlinear Dyn. 90(1), 575–580 (2017)

    Article  Google Scholar 

  30. Ren, B.: Interaction solutions for supersymmetric mKdV-B equation. Chin. J. Phys. 54(4), 628–634 (2016)

    Article  MathSciNet  Google Scholar 

  31. Wang, Y.H., Wang, H.: Nonlocal symmetry, CRE solvability and soliton-cnoidal solutions of the (2 + 1)-dimensional modified KdV-Calogero–Bogoyavlenkskii–Schiff equation. Nonlinear Dyn. 89(1), 235–241 (2017)

    Article  Google Scholar 

  32. Wazwaz, A.M.: Abundant solutions of various physical features for the (2 + 1)-dimensional modified KdV-Calogero–Bogoyavlenskii–Schiff equation. Nonlinear Dyn. 89(3), 1727–1732 (2017)

    Article  MathSciNet  Google Scholar 

  33. Huang, L.L., Chen, Y., Ma, Z.Y.: Nonlocal symmetry and interaction solutions of a generalized Kadomtsev–Petviashvili equation. Commun. Theor. Phys. 66(2), 189–195 (2016)

    Article  MathSciNet  Google Scholar 

  34. Estévez, P.G., Prada, J.: A generalization of the sine-Gordon equation to 2 + 1 dimensions. J. Nonlinear Math. Phys. 11(2), 164–179 (2004)

    Article  MathSciNet  Google Scholar 

  35. Fan, E.G., Chow, K.W.: Darboux covariant Lax pairs and infinite conservation laws of the (2 + 1)-dimensional breaking soliton equation. J. Math. Phys. 52(2), 023504 (2011)

    Article  MathSciNet  Google Scholar 

  36. Zhao, Z.L., Han, B.: Quasiperiodic wave solutions of a (2 + 1)-dimensional generalized breaking soliton equation via bilinear Bäcklund transformation. Eur. Phys. J. Plus 131(5), 128 (2016)

    Article  Google Scholar 

  37. Ma, W.X., Qin, Z.Y., Lü, X.: Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dyn. 84(2), 923–931 (2016)

    Article  MathSciNet  Google Scholar 

  38. Lü, X., Ma, W.X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85(2), 1217–1222 (2016)

    Article  MathSciNet  Google Scholar 

  39. Zhao, Z.L., Chen, Y., Han, B.: Lump soliton, mixed lump stripe and periodic lump solutions of a (2 + 1)-dimensional asymmetrical Nizhnik–Novikov–Veselov equation. Mod. Phys. Lett. B 31(14), 1750157 (2017)

    Article  MathSciNet  Google Scholar 

  40. Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379(36), 1975–1978 (2015)

    Article  MathSciNet  Google Scholar 

  41. Ma, W.X.: Lump-type solutions to the (3 + 1)-dimensional Jimbo–Miwa equation. Int. J. Nonlin. Sci. Numer. Simul. 17(7–8), 355–359 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Ma, W.X., Zhou, Y., Dougherty, R.: Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations. Int. J. Mod. Phys. B 30, 1640018 (2016)

    Article  MathSciNet  Google Scholar 

  43. Zhao, Z.L., Han, B.: Lie symmetry analysis, Bäcklund transformations, and exact solutions of a (2 + 1)-dimensional Boiti–Leon–Pempinelli system. J. Math. Phys. 58(10), 101514 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 41474102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonglong Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Han, B. Residual symmetry, Bäcklund transformation and CRE solvability of a (\(\mathbf{2}{\varvec{+}}{} \mathbf{1}\))-dimensional nonlinear system. Nonlinear Dyn 94, 461–474 (2018). https://doi.org/10.1007/s11071-018-4371-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4371-2

Keywords

Navigation