Skip to main content

Advertisement

Log in

Modal damping variations in nonlinear dynamical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

For any linear dynamical system coupled with one or more nonlinear dynamical attachments, the effect of nonlinear energy content on modal damping variations of the entire system has not been clearly addressed in the literature. Accordingly, a novel method is employed here to formulate the amplitude-dependent modal damping matrix for such nonlinear dynamical systems using an amplitude-dependent stiffness approach. The proposed method is directly applied into the equations of motion where numerical and analytical solutions are not required to be known a priori. This advantage is highly desirable to study the dynamical behavior of nonlinear dynamical systems by direct application of methods into equations of motion. Accordingly, the modal damping content variations under the effect of amplitude-dependent stiffness are investigated here. The method is based on linearizing the nonlinear coupling stiffness where a scaled amplitude-dependent stiffness has been obtained to replace the original nonlinear coupling stiffness in the system. Accordingly, the amplitude-dependent modal damping matrix in modal coordinates is obtained and investigated. Consequently, new significant findings regarding modal damping content variations under the effect of the change in nonlinear energy during oscillation are achieved through this study. Furthermore, the nonlinear amplitude-dependent modal damping matrix of the equivalent system is found to be satisfying all matrix similarity conditions with the linear amplitude-independent modal damping matrix of the original system. These findings are expected to be of significant impact on passive nonlinear targeted energy transfer for shock mitigation and energy-harvesting fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Vakakis, A.F., Gendelman, O.V., Kerschen, G., Bergman, L.A., McFarland, D.M., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems I and II. Springer, Berlin (2008)

    MATH  Google Scholar 

  2. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.C.: Nonlinear normal modes, part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009)

    Article  Google Scholar 

  3. Kerschen, G., Peeters, M., Golinval, J.C.: Nonlinear normal modes, part I: a useful framework for the structural dynamicits. Mech. Syst. Signal Process. 23, 170–194 (2009)

    Article  Google Scholar 

  4. Renson, L., Kerschen, G., Cochelin, B.: Numerical computation of nonlinear normal modes in mechanical engineering. J. Sound Vib. 364, 177–206 (2016)

    Article  Google Scholar 

  5. Salenger, G., Vakakis, A.F., Gendelman, O., Manevitch, L., Andrianov, I.: Transitions from strongly to weakly nonlinear motions of damped nonlinear oscillators. Nonlinear Dyn. 20(2), 99–114 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973)

    MATH  Google Scholar 

  7. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  8. Luo, A.C.J., Huang, J.: Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance. J. Vib. Control 18(11), 1661–1674 (2011)

    Article  MathSciNet  Google Scholar 

  9. Beléndez, A., Hernández, A., Márquez, A., Beléndez, T., Neipp, C.: Analytical approximations for the period of a nonlinear pendulum. Eur. J. Phys. 27(3), 539–551 (2006)

    Article  MATH  Google Scholar 

  10. Beléndez, A., Hernández, A., Beléndez, T., Álvarez, M.L., Gallego, S., Ortuño, M., Neipp, C.: Application of the harmonic balance method to a nonlinear oscillator typified by a mass attached to a stretched wire. J. Sound Vib. 302(4–5), 1018–1029 (2007)

    Article  Google Scholar 

  11. Sun, W.P., Wu, B.S., Lim, C.W.: Approximate analytical solutions for oscillation of a mass attached to a stretched elastic wire. J. Sound Vib. 300(3), 1042–1047 (2007)

    Article  MATH  Google Scholar 

  12. Durmaz, S., Demirbağ, S.A., Kaya, M.O.: Approximate solutions for nonlinear oscillation of a mass attached to a stretched elastic wire. Comput. Math. Appl. 61(3), 578–585 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mickens, R.E.: Comments on the method of harmonic balance. J. Sound Vib. 94, 456–460 (1984)

    Article  Google Scholar 

  14. Beléndez, A., Beléndez, T., Márquez, A., Neipp, C.: Application of He’s homotopy perturbation method to conservative truly nonlinear oscillators. Chaos Solitons Fractals 37(3), 770–780 (2008)

    Article  MATH  Google Scholar 

  15. Cveticanin, L.: Homotopy-perturbation method for pure nonlinear differential equation. Chaos Solitons Fractals 30(5), 1221–1230 (2006)

    Article  MATH  Google Scholar 

  16. Beléndez, A., Beléndez, T., Neipp, C., Hernández, A., Álvarez, M.L.: Approximate solutions of a nonlinear oscillator typified as a mass attached to a stretched elastic wire by the homotopy perturbation method. Chaos Solitons Fractals 39(2), 746–764 (2009)

    Article  MATH  Google Scholar 

  17. Cveticanin, L.: Analytical methods for solving strongly non-linear differential equations. J. Sound Vib. 214(2), 325–338 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cveticanin, L.: Pure odd-order oscillators with constant excitation. J. Sound Vib. 330(5), 976–986 (2011)

    Article  MathSciNet  Google Scholar 

  19. Brennan, M.J., Kovacic, I., Carrella, A., Waters, T.P.: On the jump-up and jump-down frequencies of the Duffing oscillator. J. Sound Vib. 318(4), 1250–1261 (2008)

    Article  Google Scholar 

  20. Burton, T.D.: On the amplitude decay of strongly non-linear damped oscillators. J. Sound Vib. 87(4), 535–541 (1983)

    Article  MATH  Google Scholar 

  21. Yuste, S.B., Bejarano, J.D.: Amplitude decay of damped non-linear oscillators studied with Jacobian elliptic functions. J. Sound Vib. 114(1), 33–44 (1987)

    Article  MATH  Google Scholar 

  22. Mickens, R.E.: A generalized iteration procedure for calculating approximations to periodic solutions of truly nonlinear oscillators. J. Sound Vib. 287(4–5), 1045–1051 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. AL-Shudeifat, M.A.: Analytical formulas for the energy, velocity and displacement decays of purely nonlinear damped oscillators. J. Vib. Control 21(6), 1210–1219 (2013)

    Article  MathSciNet  Google Scholar 

  24. Andrianov, I.V., Awrejcewicz, J.: Asymptotical behavior of a system with damping and high power-form non-linearity. J. Sound Vib. 267, 1169–1174 (2003)

    Article  MATH  Google Scholar 

  25. Gottlieb, H.P.W.: Frequencies of oscillators with fractional-power non-linearities. J. Sound Vib. 261(3), 557–566 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cveticanin, L.: Oscillator with fraction order restoring force. J. Sound Vib. 320(4), 1064–1077 (2009)

    Article  MathSciNet  Google Scholar 

  27. Rakaric, Z., Kovacic, I.: Approximations for motion of the oscillators with a non-negative real-power restoring force. J. Sound Vib. 330(2), 321–336 (2011)

    Article  Google Scholar 

  28. Al-Shudeifat, M.A.: Amplitudes decay in different kinds of nonlinear oscillators. J. Vib. Acoust. 137(3), 031012 (2015)

    Article  Google Scholar 

  29. Al-Shudeifat, M.A.: Approximation of the frequency-energy dependence in the nonlinear dynamical systems. In: ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference No. DETC2016-60163, pp. V006T09A042–V006T09A042 (2016)

  30. Al-Shudeifat, M.A.: Time-varying stiffness method for extracting the frequency-energy dependence in the nonlinear dynamical systems. Nonlinear Dyn. 89(2), 1463–1474 (2017)

    Article  Google Scholar 

  31. AL-Shudeifat, M.A.: Amplitude-dependent stiffness method for studying frequency and damping variations in nonlinear dynamical systems. In: ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference No. DETC2017-67918, pp. V006T10A047–V006T10A047 (2017)

  32. Quinn, D.D., Hubbard, S., Wierschem, N., Al-Shudeifat, M.A., Ott, R.J., Luo, J., Spencer Jr., B.F., McFarland, D.M., Vakakis, A.F., Bergman, L.A.: Equivalent modal damping, stiffening and energy exchanges in multi-degree-of-freedom systems with strongly nonlinear attachments. Proc. Inst. Mech. Eng. K J. Multi-body Dyn. 226(2), 122–146 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. AL-Shudeifat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Shudeifat, M.A. Modal damping variations in nonlinear dynamical systems. Nonlinear Dyn 93, 2565–2578 (2018). https://doi.org/10.1007/s11071-018-4342-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4342-7

Keywords

Navigation