Skip to main content

Advertisement

Log in

Transient dynamics, damping, and mode coupling of nonlinear systems with internal resonances

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The study of both linear and nonlinear structural vibrations routinely circles the concise yet complex problem of choosing a set of coordinates which yield simple equations of motion. In both experimental and mathematical methods, that choice is a difficult one because of measurement, computational, and interpretation difficulties. Often times, researchers choose to solve their problems in terms of linear, undamped mode shapes because they are easy to obtain; however, this is known to give rise to complicated phenomena such as mode coupling and internal resonance. This work considers the nature of mode coupling and internal resonance in systems containing non-proportional damping, linear detuning, and cubic nonlinearities through the method of multiple scales as well as instantaneous measures of effective damping. The energy decay observed in the structural modes is well approximated by the slow-flow equations in terms of the modal amplitudes, and it is shown how mode coupling enhances the damping observed in the system. Moreover, in the presence of a 3:1 internal resonance between two modes, the nonlinearities not only enhance the dissipation, but can allow for the exchange and transfer of energy between the resonant modes. However, this exchange depends on the resonant phase between the modes and is proportional to the energy in the lowest mode. The results of the analysis tie together interpretations used by both experimentalists and theoreticians to study such systems and provide a more concrete way to interpret these phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. One could, for example, choose \(F_{\star } \equiv {\tilde{F}}(U_{\star })\), so that \(\epsilon \ll 1\) implies that \({\tilde{F}}(U_{\star }) \ll (\pi /L_{x})^{4} \, D \, U_{\star }\), although other choices can also be used to nondimensionalize the system.

References

  1. Akulenko, L.D., Korovina, L.I., Kumakshev, S.A., Nesterov, S.V.: Self-sustained oscillations of Rayleigh and van der Pol oscillators with moderately large feedback factors. J. Appl. Math. 68(2), 241–248 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Bilbao, A., Aviles, R., Agirrebeitia, J., Ajuria, G.: Proportional damping approximation for structures with added viscoelastic dampers. Finite Elem. Anal. Des. 42, 492–502 (2006)

    Article  Google Scholar 

  3. Chatterjee, S., Dey, S.: Nonlinear dynamics of two harmonic oscillators coupled by Rayleigh type self-exciting force. Nonlinear Dyn. 72, 113–128 (2013)

    Article  MathSciNet  Google Scholar 

  4. Fuellekrug, U.: Computation of real normal modes from complex eigenvectors. Mech. Syst. Signal Process. 22, 57–65 (2007)

    Article  Google Scholar 

  5. Garvey, S., Penny, J., Friswell, M.: The relationship between the real and imaginary parts of complex modes. J. Sound Vib. 212(1), 75–83 (1998)

    Article  Google Scholar 

  6. Gottleib, O., Habib, G.: Non-linear model-based estimation of quadratic and cubic damping mechanisms governing the ddynamic of a chaotic spherical pendulum. J. Vib. Control 18(4), 536–547 (2011)

    Article  Google Scholar 

  7. Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Number 42 in Applied Mathematical Sciences. Springer, New York (1983)

    Book  Google Scholar 

  8. Güttinger, J., Noury, A., Weber, P., Eriksson, A.M., Lagoin, C., Moser, J., Eichler, C., Wallraff, A., Isacsson, A., Bachtold, A.: Energy-dependent path of dissipation in nanomechanical resonators. Nat. Nanotechnol. 12, 631–636 (2017)

    Article  Google Scholar 

  9. Karabalin, R.B., Cross, M.C., Roukes, M.L.: Nonlinear dynamics and chaos in two coupled nanomechanical resonators. Phys. Rev. B 79, 165309 (2009)

    Article  Google Scholar 

  10. Kasai, T., Link, M.: Identification of non-proportional modal damping matrix and real normal modes. Mech. Syst. Signal Process. 16(6), 921–934 (2002)

    Article  Google Scholar 

  11. Lifshitz, R., Cross, M.C.: Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays. Phys. Rev. B 67, 134302 (2003)

    Article  Google Scholar 

  12. Matheny, M.H., Villanueva, L.G., Karabalin, R.B., Sader, J.E., Roukes, M.L.: Nonlinear mode-coupling in nanomechanical systems. Nano Lett. 13, 1622–1626 (2013)

    Article  Google Scholar 

  13. Menottu, M., Morrison, B., Tan, K., Vernon, Z., Sipe, J.E., Liscidini, M.: Nonlinear coupling of linearly uncoupled resonators. Phys. Rev. Lett. 122, 013904 (2019)

    Article  Google Scholar 

  14. Moeck, J.P., Durox, D., Schuller, T., Candel, S.: Nonlinear thermoacoustic mode synchronization in annular combustors. Proc. Combust. Inst. 37, 5343–5350 (2019)

    Article  Google Scholar 

  15. Mook, D., Plaut, R., HaQuang, N.: The influence of an internal resonance on non-linear structural vibrations under subharmonic resonance conditions. J. Sound Vib. 102(4), 473–492 (1985)

    Article  Google Scholar 

  16. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  Google Scholar 

  17. Pak, C.H.: On the coupling of non-linear normal modes. Int. J. Non-Linear Mech. 41, 716–725 (2006)

    Article  MathSciNet  Google Scholar 

  18. Pak, C.H., Lee, Y.S.: Bifurcation of coupled-mode responses by modal coupling in cubic nonlinear systems. Q. Appl. Math. 74(1), 1–26 (2016)

    Article  MathSciNet  Google Scholar 

  19. Rayleigh, J.W.S.B.: Theory of Sound. Dover Publications, New York (1877)

    MATH  Google Scholar 

  20. Remick, K., Joo, H.K., McFarland, D.M., Sapsis, T.P., Bergman, L., Quinn, D.D., Vakakis, A.: Sustained high-frequency energy harvesting through a strongly nonlinear electromechanical system under single and repeated impulsive excitations. J. Sound Vib. 333, 3214–3235 (2014)

    Article  Google Scholar 

  21. Udwadia, F.E.: A note on nonpropotional damping. J. Eng. Mech. 135(11), 1248–1256 (2009)

    Article  Google Scholar 

  22. Vakakis, A.F., Manevitch, L.I., Mikhlin, Y.V., Pilipchuk, V.N., Zevin, A.A.: Normal Modes and Localization in Nonlinear Systems. Wiley Series in Nonlinear Science. Wiley, New York (1996)

    Book  Google Scholar 

Download references

Funding

This research was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE–NA–0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dane Quinn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This work is dedicated to the memory of Prof. Ali Hasan Nayfeh (1933–2017) in honor of his technical and personal contributions to the engineering dynamics community.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The coefficients \(I_{ijkl}^{\bullet ,\bullet }\) identified in Eq. (24) are defined as the Fourier components of terms in the slow-flow equations arising from the cubic nonlinearities. With \(\psi _{q} \equiv \omega _{q} \, \eta _{0} + \phi _{q}^{(0)}\), these reduce to

$$\begin{aligned} I_{ijkl}^{s,\cos }&\equiv \frac{\omega _{i}}{\pi } \, \int _{0}^{2 \, \pi /\omega _{i}} \left\{ \cos \psi _{i} \, \sin \psi _{j} \, \sin \psi _{k} \, \sin \psi _{l} \right\} \, d\eta _{0},\end{aligned}$$
(42a)
$$\begin{aligned} I_{ijkl}^{c,\cos }&\equiv \frac{\omega _{i}}{\pi } \, \int _{0}^{2 \, \pi /\omega _{i}} \left\{ \cos \psi _{i} \, \cos \psi _{j} \, \cos \psi _{k} \, \sin \psi _{l} \right\} \, d\eta _{0},\end{aligned}$$
(42b)
$$\begin{aligned} I_{ijkl}^{v,\cos }&\equiv \frac{\omega _{i}}{\pi } \, \int _{0}^{2 \, \pi /\omega _{i}} \left\{ \cos \psi _{i} \, \sin \psi _{j} \, \sin \psi _{k} \, \cos \psi _{l} \right\} \, d\eta _{0},\end{aligned}$$
(42c)
$$\begin{aligned} I_{ijkl}^{d,\cos }&\equiv \frac{\omega _{i}}{\pi } \, \int _{0}^{2 \, \pi /\omega _{i}} \left\{ \cos \psi _{i} \, \cos \psi _{j} \, \cos \psi _{k} \, \cos \psi _{l} \right\} \, d\eta _{0},\end{aligned}$$
(42d)
$$\begin{aligned} I_{ijkl}^{s,\sin }&\equiv \frac{\omega _{i}}{\pi } \, \int _{0}^{2 \, \pi /\omega _{i}} \left\{ \sin \psi _{i} \, \sin \psi _{j} \, \sin \psi _{k} \, \sin \psi _{l} \right\} \, d\eta _{0},\end{aligned}$$
(42e)
$$\begin{aligned} I_{ijkl}^{c,\sin }&\equiv \frac{\omega _{i}}{\pi } \, \int _{0}^{2 \, \pi /\omega _{i}} \left\{ \sin \psi _{i} \, \cos \psi _{j} \, \cos \psi _{k} \, \sin \psi _{l} \right\} \, d\eta _{0},\end{aligned}$$
(42f)
$$\begin{aligned} I_{ijkl}^{v,\sin }&\equiv \frac{\omega _{i}}{\pi } \, \int _{0}^{2 \, \pi /\omega _{i}} \left\{ \sin \psi _{i} \, \sin \psi _{j} \, \sin \psi _{k} \, \cos \psi _{l} \right\} \, d\eta _{0},\end{aligned}$$
(42g)
$$\begin{aligned} I_{ijkl}^{d,\sin }&\equiv \frac{\omega _{i}}{\pi } \, \int _{0}^{2 \, \pi /\omega _{i}} \left\{ \sin \psi _{i} \, \cos \psi _{j} \, \cos \psi _{k} \, \cos \psi _{l} \right\} \, d\eta _{0}, \end{aligned}$$
(42h)

The evaluation of these integrals depends on the relationship between the frequencies \((\omega _{i}, \omega _{j}, \omega _{k}, \omega _{l})\). Specifically, there exist terms that appear for any set of frequencies. For example,

$$\begin{aligned} I_{iiii}^{d,\cos } = \frac{3}{8}, \quad I_{iijj}^{d,\cos } = I_{ijij}^{d,\cos } = I_{ijji}^{d,\cos } = \frac{1}{4}, \end{aligned}$$
(43)

while \(I_{ijkl}^{d,\cos } = 0\) otherwise. Likewise one can show that \(I_{ijkl}^{d,\sin } \equiv 0\). However, additional terms arise when there exists a 3 : 1 resonance between two modal frequencies. For example, if \(\alpha \) and \(\beta \) denote mode numbers such that \(3 \, \omega _{\alpha } = \omega _{\beta }\), then there are additional components of \(I^{d,\cos }\) and \(I^{d,\sin }\) such that

$$\begin{aligned} \begin{aligned} I_{\beta \alpha \alpha \alpha }^{d,\cos } = I_{\alpha \beta \alpha \alpha }^{d,\cos } = I_{\alpha \alpha \beta \alpha }^{d,\cos } {=} I_{\alpha \alpha \alpha \beta }^{d,\cos }&{=} \frac{1}{8} \, \cos \left( \psi _{\alpha \beta }^{(0)} \right) ,\\ -I_{\beta \alpha \alpha \alpha }^{d,\sin } {=} I_{\alpha \beta \alpha \alpha }^{d,\cos } = I_{\alpha \alpha \beta \alpha }^{d,\cos } {=} I_{\alpha \alpha \alpha \beta }^{d,\cos }&{=} \frac{1}{8} \, \sin \left( \psi _{\alpha \beta }^{(0)} \right) , \end{aligned}\nonumber \\ \end{aligned}$$
(44)

where \(\psi _{\alpha \beta }^{(0)} \equiv 3 \, \phi _{\alpha }^{(0)} - \phi _{\beta }^{(0)}\). These are in addition to the terms that exist for any set of frequencies. Similar conclusions hold for the remaining parameters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathis, A.T., Quinn, D.D. Transient dynamics, damping, and mode coupling of nonlinear systems with internal resonances. Nonlinear Dyn 99, 269–281 (2020). https://doi.org/10.1007/s11071-019-05198-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05198-w

Keywords

Navigation