Skip to main content

Advertisement

Log in

Enhanced isolation performance of a high-static–low-dynamic stiffness isolator with geometric nonlinear damping

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To enhance the low-frequency vibration isolation performance of the high-static–low-dynamic stiffness (HSLDS) isolator, a novel design of the geometric nonlinear damping (GND) comprising semi-active electromagnetic shunt damping is proposed. The GND is dependent on the vibration displacement and velocity, which can make the HSLDS isolator attain different damping characteristics in different frequency bands. Firstly, the configuration of the HSLDS isolator assembled with GND is presented, and then the restoring force, stiffness, and damping are derived. The dynamics of the mount under both base and force excitations are investigated based on the harmonic balance method, which are then verified by numerical simulations. After that, the effects of GND on the displacement and force transmissibility are studied, and the excellent performance caused by GND is analyzed based on the equivalent viscous damping mechanism. Finally, the comparison between the GND and cubic nonlinear damping is performed. The results demonstrate that the HSLDS isolator assembled with GND can realize the requirements of an isolation system under both base and force excitations of broadband vibration isolation performance and a low resonance peak with the high-frequency attenuation unaffected. Moreover, the GND outperforms the linear damping no matter the base excitation or force excitation is applied. For base excitation, the GND exhibits some desirable properties that the cubic nonlinear damping does not have at high frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

GND:

Geometric nonlinear damping

EMSD:

Electromagnetic shunt damping

HSLDS:

High-static–low-dynamic stiffness

QZS:

Quasi-zero stiffness

NSM:

Negative stiffness mechanisms

DVDD:

Displacement–velocity-dependent damping

SFS:

Spiral flexure spring

MNSS:

Magnetic negative stiffness spring

MNS:

Magnetic negative stiffness

ED:

Electromagnetic devices

ENIC:

External negative impedance circuits

References

  1. Rivin, E.I.: Passive vibration isolation. Appl. Mech. Rev. 57(6), B31–B32 (2004)

    Article  Google Scholar 

  2. Thomson, W.: Theory of Vibration with Applications. CRC Press, Boca Raton (1996)

    Google Scholar 

  3. Alabuzhev, P.M., Rivin, E.I.: Vibration Protecting and Measuring Systems with Quasi-Zero Stiffness. Hemisphere Pub. Corp, Washington (1989)

    Google Scholar 

  4. Carrella, A., Brennan, M.J., Waters, T.P., Lopes, V.: Force and displacement transmissibility of a nonlinear isolator with high-static--low-dynamic-stiffness. Int. J. Mech. Sci. 55(1), 22–29 (2012). https://doi.org/10.1016/j.ijmecsci.2011.11.012

    Article  Google Scholar 

  5. Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3–5), 678–689 (2007). https://doi.org/10.1016/j.jsv.2006.10.011

    Article  Google Scholar 

  6. Carrella, A., Brennan, M.J., Kovacic, I., Waters, T.P.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322(4–5), 707–717 (2009). https://doi.org/10.1016/j.jsv.2008.11.034

    Article  Google Scholar 

  7. Xu, D.L., Zhang, Y.Y., Zhou, J.X., Lou, J.J.: On the analytical and experimental assessment of the performance of a quasi-zero-stiffness isolator. J. Vib. Control 20(15), 2314–2325 (2014). https://doi.org/10.1177/1077546313484049

    Article  Google Scholar 

  8. Platus, D.L.: Negative-stiffness-mechanism vibration isolation systems. In: Derby, E.A., Gordon, C.G., Vukobratovich, D., Yoder, P.R., Zweben, C. (eds.) Optomechanical Engineering and Vibration Control, Proceedings of the Society of Photo-Optical Instrumentation Engineers (Spie), vol. 3786, pp. 98–105. Spie-International Society for Optical Engineering, Bellingham (1999)

  9. Huang, X.C., Liu, X.T., Sun, J.Y., Zhang, Z.Y., Hua, H.X.: Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study. J. Sound Vib. 333(4), 1132–1148 (2014). https://doi.org/10.1016/j.jsv.2013.10.026

    Article  Google Scholar 

  10. Liu, X.T., Huang, X.C., Hua, H.X.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332(14), 3359–3376 (2013). https://doi.org/10.1016/j.jsv.2012.10.037

    Article  Google Scholar 

  11. Huang, X.C., Liu, X.T., Hua, H.X.: Effects of stiffness and load imperfection on the isolation performance of a high-static--low-dynamic-stiffness non-linear isolator under base displacement excitation. Int. J. Non Linear Mech. 65, 32–43 (2014). https://doi.org/10.1016/j.ijnonlinmec.2014.04.011

    Article  Google Scholar 

  12. Huang, X.C., Liu, X.T., Sun, J.Y., Zhang, Z.Y., Hua, H.X.: Effect of the system imperfections on the dynamic response of a high-static--low-dynamic stiffness vibration isolator. Nonlinear Dyn. 76(2), 1157–1167 (2014). https://doi.org/10.1007/s11071-013-1199-7

    Article  MathSciNet  Google Scholar 

  13. Carrella, A., Brennan, M.J., Waters, T.P., Shin, K.: On the design of a high-static--low-dynamic stiffness isolator using linear mechanical springs and magnets. J. Sound Vib. 315(3), 712–720 (2008). https://doi.org/10.1016/j.jsv.2008.01.046

    Article  Google Scholar 

  14. Robertson, W.S., Kidner, M.R.F., Cazzolato, B.S., Zander, A.C.: Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation. J. Sound Vib. 326(1–2), 88–103 (2009). https://doi.org/10.1016/j.jsv.2009.04.015

    Article  Google Scholar 

  15. Xu, D.L., Yu, Q.P., Zhou, J.X., Bishop, S.R.: Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 332(14), 3377–3389 (2013). https://doi.org/10.1016/j.jsv.2013.01.034

    Article  Google Scholar 

  16. Wu, W.J., Chen, X.D., Shan, Y.H.: Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness. J. Sound Vib. 333(13), 2958–2970 (2014). https://doi.org/10.1016/j.jsv.2014.02.009

    Article  Google Scholar 

  17. Dong, G.X., Zhang, X.N., Xie, S.L., Yan, B., Luo, Y.J.: Simulated and experimental studies on a high-static--low-dynamic stiffness isolator using magnetic negative stiffness spring. Mech. Syst. Signal Process. 86, 188–203 (2017). https://doi.org/10.1016/j.ymssp.2016.09.040

    Article  Google Scholar 

  18. Zhou, N., Liu, K.: A tunable high-static--low-dynamic stiffness vibration isolator. J. Sound Vib. 329(9), 1254–1273 (2010). https://doi.org/10.1016/j.jsv.2009.11.001

    Article  Google Scholar 

  19. Ravindra, B., Mallik, A.K.: Hard Duffing-type vibration isolator with combined Coulomb and viscous damping. Int. J. Non Linear Mech. 28(4), 427–440 (1993). https://doi.org/10.1016/0020-7462(93)90017-F

    Article  MATH  Google Scholar 

  20. Ho, C., Lang, Z.Q., Billings, S.A.: A frequency domain analysis of the effects of nonlinear damping on the Duffing equation. Mech. Syst. Signal Process. 45(1), 49–67 (2014). https://doi.org/10.1016/j.ymssp.2013.10.027

    Article  Google Scholar 

  21. Ho, C., Lang, Z.Q., Billings, S.A.: Design of vibration isolators by exploiting the beneficial effects of stiffness and damping nonlinearities. J. Sound Vib. 333(12), 2489–2504 (2014). https://doi.org/10.1016/j.jsv.2014.02.011

    Article  Google Scholar 

  22. Peng, Z.K., Meng, G., Lang, Z.Q., Zhang, W.M., Chu, F.L.: Study of the effects of cubic nonlinear damping on vibration isolations using harmonic balance Method. Int. J. Non Linear Mech. 47(10), 1073–1080 (2012). https://doi.org/10.1016/j.ijnonlinmec.2011.09.013

    Article  Google Scholar 

  23. Laalej, H., Lang, Z.Q., Daley, S., Zazas, I., Billings, S.A., Tomlinson, G.R.: Application of non-linear damping to vibration isolation: an experimental study. Nonlinear Dyn. 69(1–2), 409–421 (2012). https://doi.org/10.1007/s11071-011-0274-1

    Article  Google Scholar 

  24. Milovanovic, Z., Kovacic, I., Brennan, M.J.: On the displacement transmissibility of a base excited viscously damped nonlinear vibration isolator. J. Vib. Acoust. 131(5), 054502 (2009). https://doi.org/10.1115/1.3147140

    Article  Google Scholar 

  25. Tang, B., Brennan, M.J.: A comparison of two nonlinear damping mechanisms in a vibration isolator. J. Sound Vib. 332(3), 510–520 (2013). https://doi.org/10.1016/j.jsv.2012.09.010

    Article  Google Scholar 

  26. Freischlag, J.A., Lawrence, P.F., Perler, B.A.: The Society for Vascular Surgery will participate in a new global vascular practice guidelines initiative. J. Sound Vib. 59(2), 510–510 (2014). https://doi.org/10.1016/j.jvs.2013.12.025

    Google Scholar 

  27. Sun, X.T., Jing, X.J.: Analysis and design of a nonlinear stiffness and damping system with a scissor-like structure. Mech. Syst. Signal Process. 66–67, 723–742 (2016). https://doi.org/10.1016/j.ymssp.2015.05.026

    Article  Google Scholar 

  28. Sun, X.T., Xu, J., Jing, X.J., Cheng, L.: Beneficial performance of a quasi-zero-stiffness vibration isolator with time-delayed active control. Int. J. Mech. Sci. 82, 32–40 (2014). https://doi.org/10.1016/j.ijmecsci.2014.03.002

    Article  Google Scholar 

  29. Xu, J., Sun, X.T.: A multi-directional vibration isolator based on Quasi-Zero-Stiffness structure and time-delayed active control. Int. J. Mech. Sci. 100, 126–135 (2015). https://doi.org/10.1016/j.ijmecsci.2015.06.015

    Article  Google Scholar 

  30. Huang, X.C., Sun, J.Y., Hua, H.X., Zhang, Z.Y.: The isolation performance of vibration systems with general velocity–displacement-dependent nonlinear damping under base excitation: numerical and experimental study. Nonlinear Dyn. 85(2), 777–796 (2016). https://doi.org/10.1007/s11071-016-2722-4

    Article  MathSciNet  Google Scholar 

  31. Rahim, M.A., Waters, T.P., Rustighi, E.: Active damping control for vibration isolation of high-static--low-dynamic-stiffness isolators. In: Proceedings of International Conference on Noise and Vibration Engineering (ISMA2014) and International Conference on Uncertainty in Structural Dynamics (USD2014), pp. 173–186 (2014)

  32. Cheng, C., Li, S.M., Wang, Y., Jiang, X.X.: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping. Nonlinear Dyn. 87(4), 2267–2279 (2017). https://doi.org/10.1007/s11071-016-3188-0

    Article  Google Scholar 

  33. Yan, B., Luo, Y.J., Zhang, X.N.: Structural multimode vibration absorbing with electromagnetic shunt damping. J. Vib. Control 22(6), 1604–1617 (2016). https://doi.org/10.1177/1077546314543809

    Article  MathSciNet  Google Scholar 

  34. Yan, B., Zhang, X.N., Luo, Y.J., Zhang, Z.F., Xie, S.L., Zhang, Y.H.: Negative impedance shunted electromagnetic absorber for broadband absorbing: experimental investigation. Smart Mater. Struct. 23(12), 11 (2014). https://doi.org/10.1088/0964-1726/23/12/125044

    Article  Google Scholar 

  35. Zhang, X.N., Niu, H.P., Yan, B.: A novel multimode negative inductance negative resistance shunted electromagnetic damping and its application on a cantilever plate. J. Sound Vib. 331(10), 2257–2271 (2012). https://doi.org/10.1016/j.jsv.2011.12.028

    Article  Google Scholar 

  36. Niu, H.P., Zhang, X.N., Xie, S.L., Wang, P.P.: A new electromagnetic shunt damping treatment and vibration control of beam structures. Smart Mater. Struct. 18(4), 15 (2009). https://doi.org/10.1088/0964-1726/18/4/045009

    Article  Google Scholar 

  37. Ravaud, R., Lemarquand, G., Electromagnetics, A.: Analytical expressions of the magnetic field created by tile permanent magnets of various magnetization directions. In: Piers 2009 Moscow Vols I and II, Proceedings. Electromagnetics Acad, Cambridge (2009)

  38. Kovacic, I., Brennan, M.J.: The Duffing Equation: Nonlinear Oscillators and Their Behaviour. Wiley, New York (2011)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China Academy of Engineering Physics and jointly set up “NSAF” joint fund (Grant No. U1630120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinong Zhang.

Appendix

Appendix

The integral expressions \(\varPhi _{1}\), \(\varPhi _{2}\), \(\varPhi _{3}\), and \(\varPhi _{4}\) in Eqs. (12) are given as follows:

$$\begin{aligned} \varPhi _1= & {} \frac{\cos \left( {\varphi _2 -\varphi _1 } \right) r\left( i \right) r_{\mathrm{in}2} }{\left| {r_{\mathrm{in}2}^2 +r^{2}\left( i \right) -2r_{\mathrm{in}2} r\left( i \right) \cos \left( {\varphi _2 -\varphi _1 } \right) +\left( {z_2 -z\left( k \right) } \right) ^{2}} \right| ^{1/2}} \end{aligned}$$
(49)
$$\begin{aligned} \varPhi _2= & {} \frac{\cos \left( {\varphi _2 -\varphi _1 } \right) r\left( i \right) r_{\mathrm{out}2} }{\left| {r_{\mathrm{out}2}^2 +r^{2}\left( i \right) -2r_{\mathrm{out}2} r\left( i \right) \cos \left( {\varphi _2 -\varphi _1 } \right) +\left( {z_2 -z\left( k \right) } \right) ^{2}} \right| ^{1/2}} \end{aligned}$$
(50)
$$\begin{aligned} \varPhi _3= & {} \frac{\left( {z_2 -z\left( k \right) } \right) \cos \left( {\varphi _2 -\varphi _1 } \right) r\left( i \right) r_{\mathrm{in}2} }{\left| {r_{\mathrm{in}2}^2 +r^{2}\left( i \right) -2r_{\mathrm{in}2} r\left( i \right) \cos \left( {\varphi _2 -\varphi _1 } \right) +\left( {z_2 -z\left( k \right) } \right) ^{2}} \right| ^{3/2}} \end{aligned}$$
(51)
$$\begin{aligned} \varPhi _4= & {} \frac{\left( {z_2 -z\left( k \right) } \right) \cos \left( {\varphi _2 -\varphi _1 } \right) r\left( i \right) r_{\mathrm{out}2} }{\left| {r_{\mathrm{out}2}^2 +r^{2}\left( i \right) -2r_{\mathrm{out}2} r\left( i \right) \cos \left( {\varphi _2 -\varphi _1 } \right) +\left( {z_2 -z\left( k \right) } \right) ^{2}} \right| ^{3/2}}\nonumber \\ \end{aligned}$$
(52)

where r(i) denotes the inner and outer radii of ring-shaped magnets with \(r(1)=r_{\mathrm{in}1}\) and \(r(2)=r_{\mathrm{out}1}\). The locations of top and bottom faces of moving magnet in inertial coordinate are represented with \(z(1)=z-h_{1}/2\) and \(z(2) =z-h_{1}/2\), separately.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, G., Zhang, Y., Luo, Y. et al. Enhanced isolation performance of a high-static–low-dynamic stiffness isolator with geometric nonlinear damping. Nonlinear Dyn 93, 2339–2356 (2018). https://doi.org/10.1007/s11071-018-4328-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4328-5

Keywords

Navigation