Skip to main content
Log in

Generation of ring-shaped optical vortices in dissipative media by inhomogeneous effective diffusion

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

By means of systematic simulations, we demonstrate generation of a variety of ring-shaped optical vortices (OVs) from a two-dimensional input with embedded vorticity, in a dissipative medium modeled by the cubic–quintic complex Ginzburg–Landau equation with an inhomogeneous effective diffusion (spatial filtering) term, which is anisotropic in the transverse plane and periodically modulated in the longitudinal direction. We show the generation of stable square- and gear-shaped OVs, as well as tilted oval-shaped vortex rings, and string-shaped bound states built of a central fundamental soliton and two vortex satellites, or of three fundamental solitons. Their shape can be adjusted by tuning the strength and modulation period of the inhomogeneous diffusion. Stability domains of the generated OVs are identified by varying the vorticity of the input and parameters of the inhomogeneous diffusion. The results suggest a method to generate new types of ring-shaped OVs with applications to the work with structured light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Cristals. Academic Press, San Diego (2003)

    Google Scholar 

  2. Firth, W.J.: In: Vorontsov, M.A., Miller, W.B. (eds.) Self-Organization in Optical Systems and Applications in Information Technology. Springer, Berlin (1995)

    Google Scholar 

  3. Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B: Quantum Semiclass. Opt. 7, R53–R72 (2005)

    Article  Google Scholar 

  4. Mihalache, D.: Linear and nonlinear light bullets: recent theoretical studies. Rom. J. Phys. 57, 352–371 (2012)

    Google Scholar 

  5. Bagnato, V.S., Frantzeskakis, D.J., Kevrekidis, P.G., Malomed, B.A., Mihalache, D.: Bose–Einstein condensation: twenty years after. Rom. Rep. Phys. 67, 5–50 (2015)

    Google Scholar 

  6. Malomed, B., Torner, L., Wise, F., Mihalache, D.: On multidimensional solitons and their legacy in contemporary atomic, molecular and optical physics. J. Phys. B: At. Mol. Opt. Phys. 49, 170502 (2016)

    Article  Google Scholar 

  7. Malomed, B.A.: Multidimensional solitons: well-established results and novel findings. Eur. Phys. J. Spec. Top. 225, 2507–2532 (2016)

    Article  Google Scholar 

  8. Rosanov, N.N., Fedorov, S.V., Shatsev, A.N.: In: Akhmediev, N., Ankiewicz, A. (eds.) Dissipative Solitons: From Optics to Biology and Medicine. Lecture Notes in Physics, vol. 751. Springer, Berlin (2008)

    Google Scholar 

  9. Kuszelewicz, R., Barbay, S., Tissoni, G., Almuneau, G.: Editorial on dissipative optical solitons. Eur. Phys. J. D 59(1), 1–2 (2010)

    Article  Google Scholar 

  10. Firth, W.J., Scroggie, A.J.: Optical bullet holes: robust controllable localized states of a nonlinear cavity. Phys. Rev. Lett. 76(10), 1623–1626 (1996)

    Article  Google Scholar 

  11. Chen, Z., Mccarthy, K.: Spatial soliton pixels from partially incoherent light. Opt. Lett. 27(22), 2019–2021 (2002)

    Article  Google Scholar 

  12. Fleischer, J.W., Segev, M., Efremidis, N.K., Christodoulides, D.N.: Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422(6928), 147–150 (2003)

    Article  Google Scholar 

  13. Kartashov, Y.V., Egorov, A.A., Torner, L., Christodoulides, D.N.: Stable soliton complexes in two-dimensional photonic lattices. Opt. Lett. 29(16), 1918–1920 (2004)

    Article  Google Scholar 

  14. Rosanov, N.N.: Spatial Hysteresis and Optical Patterns. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  15. Malomed, B.A.: Complex Ginzburg-Landau equation. In: Scott, A. (ed.) Encyclopedia of Nonlinear Science, pp. 157–160. Routledge, New York (2005)

    Google Scholar 

  16. Mandel, P., Tlidi, M.: Transverse dynamics in cavity nonlinear optics. J. Opt. B 6, R60–R75 (2004)

    Article  Google Scholar 

  17. Akhmediev, N.N., Afanasjev, V.V., Soto-Crespo, J.M.: Singularities and special soliton solutions of the cubic–quintic complex Ginzburg–Landau equation. Phys. Rev. E 53, 1190–1201 (1996)

    Article  Google Scholar 

  18. Mihalache, D., Mazilu, D., Lederer, F., Kartashov, Y.V., Crasovan, L.C., Torner, L., Malomed, B.A.: Stable vortex tori in the three-dimensional cubic–quintic Ginzburg–Landau equation. Phys. Rev. Lett. 97, 073904 (2006)

    Article  Google Scholar 

  19. Leblond, H., Komarov, A., Salhi, M., Haboucha, A., Sanchez, F.: Bound states of three localized states of the cubic–quintic CGL equation. J. Opt. A 8, 319–326 (2006)

    Article  Google Scholar 

  20. Mihalache, D., Mazilu, D., Lederer, F., Leblond, H., Malomed, B.A.: Stability of dissipative optical solitons in the three-dimensional cubic–quintic Ginzburg–Landau equation. Phys. Rev. A 75, 033811 (2007)

    Article  Google Scholar 

  21. Renninger, W.H., Chong, A., Wise, F.W.: Dissipative solitons in normal-dispersion fiber lasers. Phys. Rev. A 77, 023814 (2008)

    Article  Google Scholar 

  22. Taki, M., Akhmediev, N., Wabnitz, S., Chang, W.: Influence of external phase and gain-loss modulation on bound solitons in laser systems. J. Opt. Soc. Am. B 26, 2204–2210 (2009)

    Article  Google Scholar 

  23. Aranson, I.S., Kramer, L.: The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Akhmediev, N., Sotocrespo, J.M., Town, G.: Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg–Landau equation approach. Phys. Rev. E 63, 056602 (2001)

    Article  Google Scholar 

  25. Crasovan, L.C., Malomed, B.A., Mihalache, D.: Stable vortex solitons in the two-dimensional Ginzburg–Landau equation. Phys. Rev. E 63, 016605 (2001)

    Article  MATH  Google Scholar 

  26. He, Y.J., Malomed, B.A., Ye, F.W., Hu, B.B.: Dynamics of dissipative spatial solitons over a sharp potential. J. Opt. Soc. Am. B 27, 1139–1142 (2010)

    Article  Google Scholar 

  27. Grelu, P., Akhmediev, N.: Dissipative solitons for mode-locked lasers. Nat. Photon. 6, 84–92 (2012)

    Article  Google Scholar 

  28. Fernandez-Oto, C., Valcárcel, G.J.D., Tlidi, M., Panajotov, K., Staliunas, K.: Phase-bistable patterns and cavity solitons induced by spatially periodic injection into vertical-cavity surface-emitting lasers. Phys. Rev. A 89, 055802 (2014)

    Article  Google Scholar 

  29. Malomed, B.A.: Spatial solitons supported by localized gain. J. Opt. Soc. Am. B 31, 2460–2475 (2014)

    Article  Google Scholar 

  30. Tlidi, M., Staliunas, K., Panajotov, K., Vladimirov, A.G., Clerc, M.G.: Introduction: localized structures in dissipative media—from optics to plant ecology. Phil. Trans. R. Soc. A 372, 20140101 (2014)

    Article  Google Scholar 

  31. Rosanov, N.N., Sochilin, G.B., Vinokurova, V.D., Vysotina, N.V.: Spatial and temporal structures in cavities with oscillating boundaries. Phil. Trans. R. Soc. A 372, 20140012 (2014)

    Article  Google Scholar 

  32. Mihalache, D., Mazilu, D., Skarka, V., Malomed, B.A., Leblond, H., Aleksi, N.B., Lederer, F.: Stable topological modes in two-dimensional Ginzburg–Landau models with trapping potentials. Phys. Rev. A 82, 023813 (2010)

    Article  Google Scholar 

  33. Skarka, V., Aleksić, N.B., Leblond, H., Malomed, B.A., Mihalache, D.: Varieties of stable vortical solitons in Ginzburg–Landau media with radially inhomogeneous losses. Phys. Rev. Lett. 105, 213901 (2010)

    Article  Google Scholar 

  34. Skarka, V., Aleksić, N.B., Lekić, M., Aleksić, B.N., Malomed, B.A., Mihalache, D., Leblond, H.: Formation of complex two-dimensional dissipative solitons via spontaneous symmetry breaking. Phys. Rev. A 90, 023845 (2014)

    Article  Google Scholar 

  35. Liu, B., He, X.-D., Li, S.-J.: Continuous emission of fundamental solitons from vortices in dissipative media by a radial-azimuthal potential. Opt. Express 21(5), 5561–5566 (2013)

    Article  Google Scholar 

  36. Liu, B., Liu, Y.F., He, X.D.: Impact of phase on collision between vortex solitons in three-dimensional cubic–quintic complex Ginzburg–Landau equation. Opt. Express 22(21), 26203–26211 (2014)

    Article  Google Scholar 

  37. Kalasnikov, V.L., Sorokin, E.: Dissipative raman solitons. Opt. Express 22(24), 30118–30126 (2014)

    Article  Google Scholar 

  38. Song, Y.F., Zhang, H., Zhao, L.M., Shen, D.Y., Tang, D.Y.: Coexistence and interaction of vector and bound vector solitons in a dispersion-managed fiber laser mode locked by graphene. Opt. Express 24(2), 1814–1822 (2016)

    Article  Google Scholar 

  39. Mihalache, D.: Localized optical structures: an overview of recent theoretical and experimental developments. Proc. Rom. Acad. A 16(1), 62–69 (2015)

    MathSciNet  Google Scholar 

  40. Mihalache, D.: Multidimensional localized structures in optical and matter-wave media: a topical survey of recent literature. Rom. Rep. Phys. 69(1), 403 (2017)

    Google Scholar 

  41. Skarka, V., Aleksić, N.B., Krolikowski, W., Christodoulides, D.N., Rakotoarimalala, S., Aleksić, B.N., Belić, M.: Self-structuring of stable dissipative breathing vortex solitons in a colloidal nanosuspension. Opt. Express 25(9), 10090–10102 (2017)

    Article  Google Scholar 

  42. Swartzlander, G.A., Law, C.T.: Optical vortex solitons observed in Kerr nonlinear media. Phys. Rev. Lett. 69(17), 2503–2506 (1992)

    Article  Google Scholar 

  43. Lutherdavies, B., Christou, J., Tikhonenko, V., Kivshar, Y.S.: Optical vortex solitons: experiment versus theory. J. Opt. Soc. Am. B 14(11), 3045–3053 (1997)

    Article  Google Scholar 

  44. Desyatnikov, A.S., Torner, L., Kivshar, Y.S.: Optical vortices and vortex solitons. Progr. Opt. 47, 291–391 (2005)

    Article  Google Scholar 

  45. Tikhonenko, V., Akhmediev, N.N.: Excitation of vortex solitons in a Gaussian beam configuration. Opt. Commun. 126, 108–112 (1996)

    Article  Google Scholar 

  46. Carlsson, A.H., Dan, A., Ostrovskaya, E.A., Malmberg, J.N., Lisak, M., Alexander, T.J., Kivshar, Y.S.: Linear and nonlinear waveguides induced by optical vortex solitons. Opt. Lett. 25, 660–662 (2000)

    Article  Google Scholar 

  47. Kivshar, Y.S., Luther-Davies, B.: Dark optical solitons: physics and applications. Phys. Rep. 298, 81–197 (1998)

    Article  Google Scholar 

  48. Andrews, D.: Structured light and its applications: an introduction to phase-structured beams and nanoscale optical forces. Academic Press, Cambridge (2008)

    Google Scholar 

  49. Adhikari, S.K.: Stable spatial and spatiotemporal optical soliton in the core of an optical vortex. Phys. Rev. E 92, 042926 (2015)

    Article  Google Scholar 

  50. Carlsson, A.H., Ostrovskaya, E., Salgueiro, J.R., Kivshar, Y.: Second-harmonic generation in vortex-induced waveguides. Opt. Lett. 29, 593–595 (2004)

    Article  Google Scholar 

  51. Yao, A.M., Padgett, M.J.: Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3(2), 161–204 (2011)

    Article  Google Scholar 

  52. Law, C.T., Zhang, X., Swartzlander, G.A.: Waveguiding properties of optical vortex solitons. Opt. Lett. 25(1), 55–57 (2000)

    Article  Google Scholar 

  53. Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986)

    Article  Google Scholar 

  54. Kivshar, Y.S., Christou, J., Tikhonenko, V., Luther-Davies, B., Pismen, L.M.: Dynamics of optical vortex solitons. Opt. Commun. 152, 198–206 (1998)

    Article  Google Scholar 

  55. Velchev, I., Dreischuh, A., Neshev, D., Dinev, S.: Interactions of optical vortex solitons superimposed on different background beams. Opt. Commun. 130, 385–392 (1996)

    Article  Google Scholar 

  56. Rozas, D., Swartzlander, G.A.: Observed rotational enhancement of nonlinear optical vortices. Opt. Lett. 25, 126–128 (2000)

    Article  Google Scholar 

  57. Rozas, D., Law, C.T., Swartzlander, G.A.: Propagation dynamics of optical vortices. J. Opt. Soc. Am. B 14, 3054–3065 (1997)

    Article  Google Scholar 

  58. Neshev, D., Dreischuh, A., Assa, M., Dinev, S.: Motion control of ensembles of ordered optical vortices generated on finite extent background. Opt. Commun. 151, 413–421 (1998)

    Article  Google Scholar 

  59. Huang, C., Ye, F., Malomed, B.A., Kartashov, Y.V., Chen, X.: Solitary vortices supported by localized parametric gain. Opt. Lett. 38, 2177–2180 (2013)

    Article  Google Scholar 

  60. Zeng, J., Malomed, B.A.: Localized dark solitons and vortices in defocusing media with spatially inhomogeneous nonlinearity. Phys. Rev. E 95, 052214 (2017)

    Article  MathSciNet  Google Scholar 

  61. Reyna, A.S., de Araújo, C.B.: Guiding and confinement of light induced by optical vortex solitons in a cubic–quintic medium. Opt. Lett. 41, 191–194 (2016)

    Article  Google Scholar 

  62. Hu, B., Ye, F., Torner, L., Kartashov, Y.V.: Twin-vortex solitons in nonlocal nonlinear media. Opt. Lett. 35, 628–630 (2010)

    Article  Google Scholar 

  63. Porras, M.A., Ramos, F.: Quasi-ideal dynamics of vortex solitons embedded in flattop nonlinear Bessel beams. Opt. Lett. 42, 3275–3278 (2017)

    Article  Google Scholar 

  64. Lai, X.-J., Cai, X.-O., Zhang, J.-F.: Compression and stretching of ring-vortex solitons in a bulk nonlinear medium. Chin. Phys. B 24, 070503 (2015)

    Article  Google Scholar 

  65. Huang, C., Dong, L.: Stable vortex solitons in a ring-shaped partially-PT-symmetric potential. Opt. Lett. 41, 5194–5197 (2016)

    Article  Google Scholar 

  66. Lou, J., Cheng, M., Lim, T.T.: Evolution of an elliptic vortex ring in a viscous fluid. Phys. Fluids 28, 037104 (2016)

    Article  Google Scholar 

  67. Veretenov, N.A., Rosanov, N.N., Fedorov, S.V.: Motion of complexes of 3D-laser solitons. Opt. Quant. Electron. 40, 253–262 (2008)

    Article  Google Scholar 

  68. Veretenov, N.A., Fedorov, S.V., Rosanov, N.N.: Topological vortex and knotted dissipative optical 3D solitons generated by 2D vortex solitons. Phys. Rev. Lett. 119, 263901 (2017)

    Article  Google Scholar 

  69. Skupin, S., Bergé, L., Peschel, U., Lederer, F., Méjean, G., Yu, J., Kasparian, J., Salmon, E., Wolf, J.P., Rodriguez, M., Wöste, L., Bourayou, R., Sauerbrey, R.: Filamentation of femtosecond light pulses in the air: turbulent cells versus long-range clusters. Phys. Rev. E 70, 046602 (2004)

    Article  Google Scholar 

  70. Coullet, P., Gil, L., Rocca, F.: Optical vortices. Opt. Commun. 73, 403–408 (1989)

    Article  Google Scholar 

  71. Lega, J., Moloney, J.V., Newell, A.C.: Swift–Hohenberg equation for lasers. Phys. Rev. Lett. 73, 2978–2981 (1994)

    Article  Google Scholar 

  72. Hochheiser, D., Moloney, J.V., Lega, J.: Controlling optical turbulence. Phys. Rev. A 55, R4011–R4014 (1997)

    Article  Google Scholar 

  73. Askitopoulos, A., Ohadi, H., Hatzopoulos, Z., Savvidis, P.G., Kavokin, A.V., Lagoudakis, P.G.: Polariton condensation in an optically induced two-dimensional potential. Phys. Rev. B 88, 041308 (2013)

    Article  Google Scholar 

  74. Ardizzone, V., Lewandowski, P., Luk, M.H., Tse, Y.C., Kwong, N.H., Lücke, A., Abbarchi, M., Baudin, E., Galopin, E., Bloch, J., Lemaitre, A., Leung, P.T., Roussignol, P., Binder, R., Tignon, J., Schumacher, S.: Formation and control of tturing patterns in a coherent quantum fluid. Sci. Rep. 3, 3016 (2013)

    Article  Google Scholar 

  75. Schachenmayer, J., Genes, C., Tignone, E., Pupillo, G.: Cavity-enhanced transport of excitons. Phys. Rev. Lett. 114, 196403 (2015)

    Article  Google Scholar 

  76. Shahnazaryan, V., Kyriienko, O., Shelykh, I.: Adiabatic preparation of a cold exciton condensate. Phys. Rev. B 91, 085302 (2014)

    Article  Google Scholar 

  77. Bobrovska, N., Matuszewski, M.: Adiabatic approximation and fluctuations in exciton-polariton condensates. Phys. Rev. B 92, 035311 (2015)

    Article  Google Scholar 

  78. Li, H., Lai, S., Qui, Y., Zhu, X., Xie, J., Mihalache, D., He, Y.: Stable dissipative optical vortex clusters by inhomogeneous effective diffusion. Opt. Express 25, 27948–27967 (2017)

    Article  Google Scholar 

  79. Malomed, B.A.: Soliton Management in Periodic Systems. Springer, New York (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China (Grant Nos. 11174061, 61675001, and 11774068), the Guangdong Province Nature Foundation of China (Grant No. 2017A030311025), and the Guangdong Province Education Department Foundation of China (Grant No. 2014KZDXM059). We declare that we do not have any conflict of interest in connection with the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingji He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, S., Li, H., Qui, Y. et al. Generation of ring-shaped optical vortices in dissipative media by inhomogeneous effective diffusion. Nonlinear Dyn 93, 2159–2168 (2018). https://doi.org/10.1007/s11071-018-4316-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4316-9

Keywords

Navigation