Advertisement

Nonlinear Dynamics

, Volume 93, Issue 3, pp 1287–1300 | Cite as

Consensus in topologically interacting swarms under communication constraints and time-delays

  • M. Komareji
  • Y. Shang
  • R. Bouffanais
Original Paper
  • 174 Downloads

Abstract

The emergence of collective decision in swarming systems underscores the central role played by information transmission. Using network-control- and information-theoretic elements applied to a group of topologically interacting agents seeking consensus under switching topologies, the effects of constraints in the information capacity of the communication channel are investigated. This particular system requires us to contend with constantly reconfigurable and spatially embedded interaction networks. We find a sufficient condition on the information data rate guaranteeing the stability of the consensus process in the noiseless case. This result highlights the profound connection with the topological structure of the underlying interaction network, thus having far-reaching implications in the nascent field of swarm robotics. Furthermore, we analyze the more complex case of combined effect of noise and limited data rate. We find that the consensus process is degraded when decreasing the data rate. Moreover, the relationship between critical noise and data rate is found to be in good agreement with information-theoretic predictions. Lastly, we prove that with not-too-large time-delays, our system of topologically interacting agents is stable, provided the underlying interaction network is strongly connected. Using Lyapunov techniques, the maximum allowed time-delay is determined in terms of linear-matrix inequalities.

Keywords

Swarm Topological interaction Consensus dynamics Communication constraints 

Notes

Acknowledgements

This work was supported by a grant from the Singapore National Research Foundation (NRF) under the ASPIRE project, Grant No. NCR-NCR001-040.

Compliance with ethical standards

Conflicts of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

References

  1. 1.
    Baillieul, J., Antsaklis, P.J.: Control and communication challenges in networked real-time systems. Proc. IEEE 95(1), 9–28 (2007)CrossRefGoogle Scholar
  2. 2.
    Barberis, L., Albano, E.V.: Evidence of a robust universality class in the critical behavior of self-propelled agents: metric versus topological interactions. Phys. Rev. E 89, 012,139 (2014)CrossRefGoogle Scholar
  3. 3.
    Berger, M., Wang, Y.: Bounded semigroups of matrices. Linear Algebra Appl. 166, 21–27 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Binder, K.: Finite size scaling analysis of ising model block distribution functions. Z. Phys. B Condens. Matter 43, 119–140 (1981)CrossRefGoogle Scholar
  5. 5.
    Bouffanais, R.: Design and Control of Swarm Dynamics. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-981-287-751-2 CrossRefzbMATHGoogle Scholar
  6. 6.
    Cai, N., Diao, C., Khan, M.J.: A novel clustering method based on quasi-consensus motions of dynamical multiagent systems. Complexity 2017 (2017). http://downloads.hindawi.com/journals/complexity/2017/4978613.pdf
  7. 7.
    Cai, N., Xi, J.X., Zhong, Y.S.: Swarm stability of high-order linear time-invariant swarm systems. IET Control Theory Appl. 5(2), 402–408 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chamanbaz, M., Mateo, D., Zoss, B.M., Tokić, G., Wilhelm, E., Bouffanais, R., Yue, D.K.P.: Swarm-enabling technology for multi-robot systems. Front. Robot. AI 4, 12 (2017).  https://doi.org/10.3389/frobt.2017.00012 CrossRefGoogle Scholar
  9. 9.
    Fitch, K., Leonard, N.E.: Information centrality and optimal leader selection in noisy networks. In: IEEE 52nd Conference on Decision and Control (CDC), pp. 7510–7515. IEEE (2013)Google Scholar
  10. 10.
    Handegard, N.O., Boswell, K.M., Ioannou, C.C., Leblanc, S.P., Tjøstheim, D.B., Couzin, I.D.: The dynamics of coordinated group hunting and collective information transfer among schooling prey. Curr. Biol. 22, 1213–1217 (2012)CrossRefGoogle Scholar
  11. 11.
    Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control systems. Proc. IEEE 95(1), 138–162 (2007)CrossRefGoogle Scholar
  12. 12.
    Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97–125 (2012)CrossRefGoogle Scholar
  13. 13.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1987)Google Scholar
  14. 14.
    Hsieh, M.A., Kumar, V., Chaimowicz, L.: Decentralized controllers for shape generation with robotic swarms. Robotica 26, 691–701 (2008).  https://doi.org/10.1017/S0263574708004323 CrossRefGoogle Scholar
  15. 15.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48, 988–1001 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Komareji, M., Bouffanais, R.: Resilience and controllability of dynamic collective behaviors. PLoS One 8, e82,578 (2013).  https://doi.org/10.1371/journal.pone.0082578 CrossRefGoogle Scholar
  17. 17.
    MacKay, D.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  18. 18.
    Mateo, D., Kuan, Y.K., Bouffanais, R.: Effect of correlations in swarms on collective response. Sci. Rep. 7, 10,388 (2017).  https://doi.org/10.1038/s41598-017-09830-w CrossRefGoogle Scholar
  19. 19.
    Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Autom. Control 50, 169–182 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Nair, G.N., Evans, R.J.: Exponential stabilisability of finite-dimensional linear systems with limited date rates. Automatica 39, 585–593 (2003)CrossRefzbMATHGoogle Scholar
  21. 21.
    Nair, G.N., Fagnani, F., Zampieri, S., Evans, R.J.: Feedback control under data rate constraints: an overview. Proc. IEEE 95(1), 108–137 (2007)CrossRefGoogle Scholar
  22. 22.
    Niculescu, S.I.: Delay Effects on Stability: A Robust Control Approach. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  23. 23.
    Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)CrossRefzbMATHGoogle Scholar
  24. 24.
    Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Chap. 6.1 The Max-Flow, Min-Cut Theorem, pp. 117–120. Dover Publications, New York (1998)Google Scholar
  25. 25.
    Rakkiyappan, R., Dharani, S., Zhu, Q.: Synchronization of reaction-diffusion neural networks with time-varying delays via stochastic sampled-data controller. Nonlinear Dyn. 79(1), 485–500 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ren, W., Beard, R.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50, 655–661 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345, 795–799 (2014)CrossRefGoogle Scholar
  28. 28.
    Scholz, A., Kuboyama, N., Hempelmann, G., Vogel, W.: Complex blockade of TTX-Resistant Na\(^+\) currents by lidocaine and bupivacaine reduce firing frequency in DRG neurons. J. Neurophysiol. 279, 1746–1754 (1998)CrossRefGoogle Scholar
  29. 29.
    Sekunda, A., Komareji, M., Bouffanais, R.: Interplay between signaling network design and swarm dynamics. Netw. Sci. 4, 244–265 (2016).  https://doi.org/10.1017/nws.2016.5 CrossRefGoogle Scholar
  30. 30.
    Shang, Y., Bouffanais, R.: Consensus reaching in swarms ruled by a hybrid metric-topological distance. Eur. Phys. J. B 87, 294 (2014).  https://doi.org/10.1140/epjb/e2014-50094-4 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Shang, Y., Bouffanais, R.: Influence of the number of topologically interacting neighbors on swarm dynamics. Sci. Rep. 4, 4184 (2014).  https://doi.org/10.1038/srep04184 CrossRefGoogle Scholar
  32. 32.
    Tatikonda, S., Mitter, S.K.: Control under communication constraints. IEEE Trans. Autom. Control 49(7), 1549–1561 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase-transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Wong, W.S., Brockett, R.W.: Systems with finite communication bandwidth constraints–part I: estimation problems. IEEE Trans. Autom. Control 42(9), 1294–1299 (1997)CrossRefzbMATHGoogle Scholar
  35. 35.
    Wong, W.S., Brockett, R.W.: Systems with finite communication bandwidth constraints–part II: Stabilization with limited information feedback. IEEE Trans. Autom. Control 44(5), 1049–1053 (1997)CrossRefzbMATHGoogle Scholar
  36. 36.
    Xi, J., Fan, Z., Liu, H., Zheng, T.: Guaranteed-cost consensus for multiagent networks with Lipschitz nonlinear dynamics and switching topologies. Int. J. Robust Nonlinear Control (2017).  https://doi.org/10.1002/rnc.4051 zbMATHGoogle Scholar
  37. 37.
    Young, G.F., Scardovi, L., Cavagna, A., Giardina, I., Leonard, N.E.: Starling flock networks manage uncertainty in consensus at low cost. PLoS Comput. Biol. 9(1), e1002,894 (2013)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Yu, W., Chen, G., Cao, M., Kurths, J.: Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics. IEEE Trans. Syst. Man Cybern. Part B 40, 881–891 (2010)CrossRefGoogle Scholar
  39. 39.
    Zhu, Q., Cao, J.: Stability of markovian jump neural networks with impulse control and time varying delays. Nonlinear Anal. Real World Appl. 13(5), 2259–2270 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Zhu, Q., Li, X., Yang, X.: Exponential stability for stochastic reaction-diffusion bam neural networks with time-varying and distributed delays. Appl. Math. Comput. 217(13), 6078–6091 (2011)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Zoss, B.M., Mateo, D., Kuan, Y.K., Tokić, G., Chamanbaz, M., Goh, L., Vallegra, F., Bouffanais, R., Yue, D.K.P.: Distributed system of autonomous buoys for scalable deployment and monitoring of large waterbodies. Auton. Robots 42 (2018).  https://doi.org/10.1007/s10514-018-9702-0 (in press)

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Singapore University of Technology and Design (SUTD)SingaporeSingapore
  2. 2.Department of MathematicsTongji UniversityShanghaiChina

Personalised recommendations