Skip to main content
Log in

FPGA realizations of high-speed switching-type chaotic oscillators using compact VHDL codes

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper introduces high-speed FPGA implementations of two different chaotic systems that rely on a switching-type nonlinearity. In particular, the single-switch Jerk system and the two-wing butterfly system (previously implemented only in analog form) are realized on a modular FPGA platform. For each system, two different hardware architectures are described: a parameters-independent architecture and a customized one with fixed parameters that utilizes less FPGA resources and thus has high throughput with the minimum number of clock cycles. Experimental results show that the parameters-independent architecture utilizes 70% more of the FPGA resources, while the customized one achieves a maximum clock frequency 172.5 MHz for the Jerk and 142.6 MHz for the two-wing system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Elwakil, A.S., Kennedy, M.P.: Chua’s circuit decomposition: a systematic design approach for autonomous chaotic oscillators. J. Frankl. Inst. 337, 251–265 (2000)

    Article  MATH  Google Scholar 

  2. Elwakil, A.S., Kennedy, M.P.: Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices. IEEE Trans. Circuits Syst. I 48, 289–307 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Elwakil, A.S.: Integrator-based circuit-independent chaotic oscillator structure. Chaos 14, 364–369 (2004)

    Article  Google Scholar 

  4. Tlelo-Cuautle, E., Gaona-Hernndez, A., Garc’a-Delgado, J.: Implementation of a chaotic oscillator by designing Chuas diode with CMOS CFOAs. Analog Integr. Circuits Signal Process. 48(8), 159–162 (2006)

    Article  Google Scholar 

  5. Elwakil, A.S., Salama, K.N., Kennedy, M.P.: An equation for generating chaos and its monolithic implementation. Int. J. Bifurc. Chaos 12, 2885–2895 (2002)

    Article  Google Scholar 

  6. Ozoguz, S., Elwakil, A.S.: On the realization of circuit-independent nonautonomous pulse-excited chaotic oscillator circuits. IEEE Trans. Circuits Syst. II 51, 552–556 (2004)

    Article  Google Scholar 

  7. Elwakil, A.S.: Clock-driven chaotic pulse-width generators: an overview and demonstration of power supply attack. Int. J. Bifurc. Chaos 24(6), 1450079–1450086 (2014)

    Article  Google Scholar 

  8. Ozoguz, S., Elwakil, A.S., Ergun, S.: Cross-coupled chaotic oscillators and application to random bit generation. IEE Circuits Devices Syst. 153, 506–510 (2006)

    Article  Google Scholar 

  9. Barakat, M.L., Mansingka, A.S., Radwan, A.G., Salama, K.N.: Hardware stream cipher with controllable chaos generator for colour image encryption. IET Image Process. 8(1), 33–43 (2014)

    Article  Google Scholar 

  10. Shukla, P.K., Khare, A., Rizvi, M.A., et al.: Applied cryptography using chaos function for fast digital logic-based systems in ubiquitous computing. Entropy 17, 1387–1410 (2015)

    Article  Google Scholar 

  11. Tolba, M.F., AbdelAty, A.M., Soliman, N.S., et al.: FPGA implementation of two fractional order chaotic systems. AEU Int. J. Electron. Commun. 78, 162–172 (2017)

    Article  Google Scholar 

  12. De Micco, L., Larrondo, H.A.: Methodology for FPGA implementation of a chaos-based AWGN generator. In: Gazzano, J.D.D. (ed.) Field-Programmable Gate Array (FPGA) Technologies for High Performance Instrumentation. IGI Global, Hershey (2016). https://doi.org/10.4018/978-1-5225-0299-9.ch003

    Google Scholar 

  13. Karakaya, B., Celik, V., Gulten, A.: Chaotic cellular neural network-based true random number generator. Int. J. Circuit Theory Appl. (2017). https://doi.org/10.1002/cta.2374

    Google Scholar 

  14. Chen, C., Chen, H., Ma, H., Meng, Y., Ding, Q.: FPGA implementation of a UPT chaotic signal generator for image encryption. Pac. Sci. Rev. A Nat. Sci. Eng. 17(3), 97–102 (2015)

    Google Scholar 

  15. Ren, G., Zhou, P., Ma, J., et al.: Dynamical response of electrical activities in digital neuron circuit driven by autapse. Int. J. Bifurc. Chaos 27(12), 1750187 (2017)

    Article  MathSciNet  Google Scholar 

  16. Heidarpur, M., Ahmadi, A., Kandalaft, N.: A digital implementation of 2D Hindmarsh–Rose neuron. Nonlinear Dyn. 89(3), 2259–2272 (2017)

    Article  Google Scholar 

  17. Korkmaz, Nimet, Öztürk, İsmail, Kılıç, Recai: The investigation of chemical coupling in a HR neuron model with reconfigurable implementations. Nonlinear Dyn. 86(3), 1841–1854 (2016)

    Article  Google Scholar 

  18. Abid, A., Nasir, Q., Elwakil, A.S.: Implementation of an encrypted wireless communication system using nested chaotic maps. Int. J. Bifurc. Chaos 20, 4087–4096 (2010)

    Article  Google Scholar 

  19. Tlelo-Cuautle, E., Quintas-Valles, A., de la Fraga, L., et al.: VHDL descriptions for the FPGA implementation of PWL-function-based multi-scroll chaotic oscillators. PLoS ONE 11(12), e0168300 (2016)

    Article  Google Scholar 

  20. Qiu, M., Yu, S., Wen, Y., et al.: Design and FPGA implementation of a universal chaotic signal generator based on the Verilog HDL fixed-point algorithm and state machine control. Int. J. Bifurc. Chaos 27(3), 1750040–1750055 (2017)

    Article  MATH  Google Scholar 

  21. Bonny, T., Henkel, J.: Efficient code compression for embedded processors. IEEE Trans. Very Large Scale Integr. Syst. 16(12), 1696–1707 (2008)

    Article  Google Scholar 

  22. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, New York (2008)

    Book  MATH  Google Scholar 

  23. Dieci, L.: Jacobian free computation of Lyapunov exponents. J. Dyn. Differ. Equ. 14(3), 697–717 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Digilent, Inc: www.zedboard.org (2016). Accessed Oct 2017

  25. Inc, X.: 7 Series FPGAs Overview, vol. 1. Xilinx (2014)

  26. Xilinx, Vivado design suite—hlx editions (2016)

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talal Bonny.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonny, T., Elwakil, A.S. FPGA realizations of high-speed switching-type chaotic oscillators using compact VHDL codes. Nonlinear Dyn 93, 819–833 (2018). https://doi.org/10.1007/s11071-018-4229-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4229-7

Keywords

Navigation