Skip to main content
Log in

Online estimation and adaptive control for a class of history dependent functional differential equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents sufficient conditions for the convergence of online estimation methods and the stability of adaptive control strategies for a class of history-dependent, functional differential equations. The study is motivated by the increasing interest in estimation and control techniques for robotic systems whose governing equations include history-dependent nonlinearities. The functional differential equations in this paper are constructed using integral operators that depend on distributed parameters. As a consequence, the resulting estimation and control equations are examples of distributed parameter systems whose states and distributed parameters evolve in finite and infinite dimensional spaces, respectively. Well-posedness, existence, and uniqueness are discussed for the class of fully actuated robotic systems with history-dependent forces in their governing equation of motion. By deriving rates of approximation for the class of history-dependent operators in this paper, sufficient conditions are derived that guarantee that finite dimensional approximations of the online estimation equations converge to the solution of the infinite dimensional, distributed parameter system. The convergence and stability of a sliding mode adaptive control strategy for the history-dependent, functional differential equations is established using Barbalat’s lemma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bahlman, J.W., Swartz, S.M., Breuer, K.S.: Design and characterization of a multi-articulated robotic bat wing. Bioinspir. Biomim. 8(1), 1–17 (2013)

    Article  Google Scholar 

  2. Banks, H.T., Kunisch, K.: Estimation Techniques for Distributed Parameter Systems. Birkhauser, Boston (1989)

    Book  MATH  Google Scholar 

  3. Baumeister, J., Scondo, W., Demetriou, M.A., Rosen, I.G.: On-line parameter estimation for infinite dimensional dynamical systems. SIAM J. Control Optim. 35(2), 678–713 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  5. Corduneaunu, C.: Integral Equations and Applications. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  6. Dahmen, W.: Stability of multiscale transformations. J. Fourier Anal. Appl. 4, 341–362 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Dadashi, S., Feaster, J., Bayandor, J., Battaglia, F.: Kurdila, Andrew J.: Identification and adaptive control of history dependent unsteady aerodynamics for a flapping insect wing. Nonlinear Dyn. 85, 1405 (2016)

    Article  MATH  Google Scholar 

  8. Dadashi, S., Bobade, P., Kurdila, A.J.: Error estimates for multiwavelet approximations of a class of history dependent operators. In: 2016 IEEE 55th Conference on Decision and Control (CDC) (2016)

  9. Demetriou, M.A.: Adaptive parameter estimation of abstract parabolic and hyperbolic distributed parameter systems. Ph.D. thesis, Departments of Electrical-Systems and Mathematics, University of Southern California, Los Angeles, CA (1993)

  10. Demetriou, M.A., Rosen, I.G.: Adaptive identification of second order distributed parameter systems. Inverse Probl. 10, 261–294 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Demetriou, M.A., Rosen, I.G.: On the persistence of excitation in the adaptive identification of distributed parameter systems. IEEE Trans. Autom. Control 39, 1117–1123 (1994)

    Article  MATH  Google Scholar 

  12. DeVore, R.A.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)

    Article  MATH  Google Scholar 

  13. DeVore, R.A., Lorentz, G.: Constructive Approximation. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  14. Driver, R.D.: Existence and stability of solutions of a delay-differential system. Arch. Ration. Mech. Anal. 10(1), 401–426 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ilchmann, A., Ryan, E.P., Sangwin, C.J.: Systems of controlled functional differential equations and adaptive tracking. SIAM J. Control Optim. 40(6), 1746–1764 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ilchmann, A., Logemann, H., Ryan, E.P.: Tracking with prescribed transient performance for hysteretic systems. SIAM J. Control Optim. 48(7), 4731–4752 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ioannou, P., Sun, J.: Robust Adaptive Control. Dover, New York (2012)

    MATH  Google Scholar 

  18. Keinert, F.: Wavelets and Multiwavelets. Chapman & Hall, London (2004)

    MATH  Google Scholar 

  19. Khalil, H.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River (2003)

    Google Scholar 

  20. Krasovskii, N.N.: On the application of the second method of A.M. Lyapunov to equations with time delays. Prikl. Mat. Mekh. 20, 315–327 (1956)

    Google Scholar 

  21. Krasovskii, N.N.: On the asymptotic stability of systems with after-effect. Prikl. Mat. Mekh. 20, 513–518 (1956)

    MathSciNet  Google Scholar 

  22. Krasnoselskii, M.A., Pokrovskii, A.V.: Systems with Hysteresis. Springer, Berlin (1989)

    Book  Google Scholar 

  23. Kurdila, A., Li, J., Strganac, T., Webb, G.: Nonlinear control methodologies for hysteresis in PZT actuated on-blade elevons. J. Aerosp. Eng. 16(4), 167–176 (2003)

    Article  Google Scholar 

  24. Lewis, F.L., Dawson, D., Abdallah, C.: Robot Manipulator Control: Theory and Practice. Marcel Dekker Inc, New York (2004)

    Google Scholar 

  25. Myshkis, A.D.: General theory of differential equations with a retarded argument. Uspekhi Mat. Nauk 4(5), 99–141 (1949)

    MathSciNet  MATH  Google Scholar 

  26. Narendra, K., Annaswamy, A.: Stable Adaptive Systems. Dover, New York (2005)

    MATH  Google Scholar 

  27. Rudakov, V.P.: Qualitative theory in a Banach space, Lyapunov–Krasovskii functionals, and generalization of certain problems. Ukr. Mat. Zh. 30(1), 130–133 (1978)

  28. Rudakov, V.P.: On necessary and sufficient conditions for the extendability of solutions of functional-differential equations of the retarded type. Ukr. Mat. Zh. 26(6), 822–827 (1974)

    Google Scholar 

  29. Ryan, E., Sangwin, C.: Controlled functional differential equations and adaptive tracking. Syst. Control Lett. 47, 365–374 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sastry, S., Bodson, M.: Adaptive Control: Stability. Convergence and Robustness. Dover, New York (2011)

    MATH  Google Scholar 

  31. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modeling, Planning, and Control. Springer, London (2010)

    Google Scholar 

  32. Spong, M., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, New York (2005)

    Google Scholar 

  33. Tavernini, L.: Linear multistep methods for the numerical solution of Volterra functional differential equations. Appl. Anal. 3, 169–185 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  34. Visintin, A.: Differential Models of Hysteresis. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their constructive input and valuable suggestions that helped us improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag Bobade.

Appendices

Appendix A: Wavelets and approximation spaces over the triangular domain

We define the multiscaling functions

$$\begin{aligned} \phi _{j,k}(x) =1_{\Delta _{i_1,i_2,\ldots ,i_j}}(x)/\root \of {m(\Delta _{i_1,i_2,\ldots ,i_j})} \end{aligned}$$

in which

$$\begin{aligned} 1_{\Delta _{s}}(x)=\left\{ \begin{array}{lll} 1 &{} x \in \Delta _s\\ 0 &{} \text {otherwise} \end{array} \right. \end{aligned}$$

and \(m(\Delta _{i_1,i_2,\ldots ,i_j})\) is the area of a triangle in the level j refinement. We have defined \( (hf)(t)\circ \mu = \iint _\Delta \kappa (s,t,f)\mu (s)\mathrm{d}s. \) The approximation \((h_j f)(t)\circ \mu \) of this operator is given by

$$\begin{aligned} (h_j f)(t)\circ \mu = \iint _\Delta \sum _{l\in \Gamma _j} 1_{\Delta _{j,l}}(s) \kappa (\xi _{j,l},t,f) \mu (s)\mathrm{d}s, \end{aligned}$$

where \(\xi _{j,l}\) is the quadrature point of number l triangle of grid level j. We approximate \(\mu (s) \approx \sum _{m\in \Gamma _j} \mu _{j,m}\phi _{j,m}(s)\). Therefore,

$$\begin{aligned}&(h_j f)(t)\circ \mu _j\\&=\iint _S \left( \sum _{l\in \Gamma _j} 1_{\Delta _{j,l}}(s) \kappa (\xi _{j,l},t,f) \sum _{m\in \Gamma _j} \mu _{j,m}\phi _{j,m}(s)\right) \mathrm{d}s\\&=\sum _{l\in \Gamma _j}\sum _{m\in \Gamma _j}\kappa (\xi _{j,l},t,f) \left( \iint _S 1_{\Delta _{j,l}}(s) \phi _{j,m}(s) \mathrm{d}s\right) \mu _{j,m}\\&=\sum _{l\in \Gamma _j} \kappa (\xi _{j,l},t,f) \sqrt{m(\Delta _{j,l})}\mu _{j,l}. \end{aligned}$$

For an orthonormal basis \(\left\{ \phi _k \right\} _{k=1}^\infty \) of the separable Hilbert space P, we define the finite dimensional spaces for constructing approximations as \(P_n:=\text {span}\left\{ \phi _k\right\} _{k=1}^n\). The approximation error \(E_n\) of \(P_n\) is given by

$$\begin{aligned} E_n(f):= \inf _{g\in P_n} \Vert f-g\Vert _P. \end{aligned}$$

The approximation space \(\mathcal {A}^\alpha _2\) of order \(\alpha \) is defined as the collection of functions in P such that

$$\begin{aligned} \mathcal {A}^\alpha _2 := \biggl \{ f\in P \biggl | |f|_{\mathcal {A}^\alpha _2} := \left\{ \sum _{n=1}^\infty (n^\alpha E_n(f))^2 \frac{1}{n} \right\} ^{1/2} < \infty \biggr \}. \end{aligned}$$

For our purposes, the approximation spaces are easy to characterize: they consist of all functions \(f \in P\) whose generalized Fourier coefficients decay sufficiently fast. That is, \(f\in \mathcal {A}^\alpha _2\) if and only if

$$\begin{aligned} \sum _{k=1}^\infty k^{2\alpha }|(f,\phi _k)|^2 \le C \end{aligned}$$

for some constant C.

Appendix B: The projection operator \(\Pi _{J\rightarrow j}\)

The orthogonal projection operator \(\Pi _{J\rightarrow j}: V_J\rightarrow V_j\) maps a distributed parameter \(\mu _J\) to \(\mu _j\) i.e., \(\Pi _{J\rightarrow j}:\mu _J \mapsto \mu _j\) (Fig. 9).

Fig. 9
figure 9

Projection operator \(\Phi _{J\rightarrow j}:V_J\rightarrow V_j\)

By exploiting the orthogonality property of the operator, we have

$$\begin{aligned}&\iint _\Delta \left( \sum _{m\in \Gamma _j} \mu _{j,m}\phi _{j,m}(s){-}\sum _{l\in \Gamma _J} \mu _{J,l}\phi _{J,l}(s)\right) \phi _{j,n}(s) \mathrm{d}s\\&\quad =0. \end{aligned}$$

Therefore, we can write

$$\begin{aligned}&\sum _{m\in \Gamma _j} \left( \iint _\Delta \phi _{j,m}(s)\phi _{j,n}(s) \mathrm{d}s \right) \mu _{j,m} \\&\quad =\sum _{l\in \Gamma _J} \left( \iint _\Delta \phi _{J,l}(s)\phi _{j,n}(s) \mathrm{d}s \right) \mu _{J,l}. \end{aligned}$$

Since orthogonality implies \(\iint _\Delta \phi _{j,m}(s)\phi _{j,n}(s) \mathrm{d}s=\delta _{m,n},\) we conclude that

$$\begin{aligned} \mu _{j,n}=\sum _{l\in \Gamma _j} \left( \iint _\Delta \phi _{j,n}(s)\phi _{J,l}(s) \mathrm{d}s\right) \mu _{J,l}. \end{aligned}$$

From Theorem 1, we have

$$\begin{aligned} |(h_{j}f)(t)\circ \Pi _{j}\mu - (hf)(t)\circ \mu | \le \tilde{C}2^{-\alpha j}, \end{aligned}$$

with

$$\begin{aligned}&(hf)(t)\circ \mu = \iint _\Delta k(s,t,f)\mu (s)\mathrm {d}s,\\&(h_{j}f)(t)\circ \mu = \iint _\Delta \sum 1_{\Delta _j,l}(s)k(\zeta _{j,l},t,f)\mu (s)\mathrm {d}s, \end{aligned}$$

where \(\mu \in P = L^{2}(\Delta ) \) and we approximate \( \mu (s) \approx \sum _{l\in \Gamma _J}\mu _{J,l}\phi _{J,l}(s) \in V_J\). To implement this for the finest grid J, we compute

$$\begin{aligned}&(h_J f)(t)\circ \mu _J = (h_j f)(t)\circ \Pi _J \mu _J,\\&\quad =\iint \left( \sum 1_{\Delta _J,l}(s)k(\zeta _{J,l},t,f)\sum _{m\in \Gamma _J}\mu _{J,m}\phi _{J,m}(s)\right) \mathrm {d}s,\\&\quad =\sum _{l\in \Gamma _J}\sum _{m\in \Gamma _J}k(\zeta _{J,l},t,f)\left( \iint 1_{\Delta _J,l}(s)\phi _{J,m}(s)\mathrm {d}s\right) \mu _{J,m},\\&\quad =\sum _{l\in \Gamma _J}\frac{k(\zeta _{J,l},t,f)\mu _{J,l}}{\left( \root \of {m(\Delta _{J,l}})\right) }, \end{aligned}$$

when \(\root \of {m(\Delta _{J,l})}\) is the area of the corresponding triangle \(\Delta _{J,l}\) in the grid having resolution level J.

Appendix C: Gronwall’s inequality

We employ the integral form of Gronwall’s inequality to obtain our final convergence result. Many forms of Gronwall’s inequality exist, and we will use a particularly simple version. See Section 3.3.4 in [17]. If the piecewise continuous function f satisfies the inequality

$$\begin{aligned} f(t) \le \alpha (t) + \int _0^t \beta (s) f(s) \mathrm{d}s \end{aligned}$$

with some piecewise continuous functions \(\alpha ,\beta \) where \(\alpha \) is nondecreasing, then

$$\begin{aligned} f(t) \le \alpha (t) e^{\int _0^t\beta (s)\mathrm{d}s}. \end{aligned}$$

Appendix D: Modeling of a prototypical wing section

Figure 1 shows a simplified model of the wing. In the figure, we denote the center of mass by c.m., A is the aerodynamic center, and O is the elastic axis of the wing. The constants \(K_h\) and \(K_\theta \) are the linear and torsional stiffness, and h is the distance from origin to point O in the fixed reference frame. We denote by \(x_\theta \) the distance between point O and center of mass, whereas \(x_a\) is the distance between O and A. Point O is the origin for the body fixed reference frame.

We employ The Euler–Lagrange technique to derive the equation of motion for the depicted wing model. The function \(L(\theta ,\dot{\theta })\) is the history-dependent lift force acting at the aerodynamic center, and \(M(\theta ,\dot{\theta })\) is the history-dependent aerodynamic moment about point A. The variables \(L_{\beta _1}\) and \(L_{\beta _2}\) are the actuating forces acting at point D, and \(\beta _1\), \(\beta _2\) are the angles between the midchord of the wing and the trailing edge and leading edge flaps, respectively.

The position vector of the mass center is given as

$$\begin{aligned} \mathbf {r}_{c.m.} = h\hat{n}_1 - x_\theta \hat{b}_2, \end{aligned}$$

and therefore the corresponding velocity of point C is

$$\begin{aligned} \mathbf {\dot{r}}_{c.m.} = \dot{h}\hat{n}_1 + x_\theta \dot{\theta }\hat{b}_1. \end{aligned}$$

The rotation matrix for transformation between inertial frame of reference to body fixed frame of reference is

$$\begin{aligned} \begin{bmatrix} \hat{b}_1\\ \hat{b}_2 \end{bmatrix} = \begin{bmatrix} \cos \theta&\sin \theta \\ -\sin \theta&\cos \theta \end{bmatrix} \begin{bmatrix} \hat{n}_1\\ \hat{n}_2 \end{bmatrix}. \end{aligned}$$

The kinetic energy is computed to be

$$\begin{aligned} T= & {} \frac{1}{2}m(\mathbf {r}_{c.m.}.\mathbf {r}_{c.m.} ) + \frac{1}{2} I_\theta {\dot{\theta }^2},\\ T= & {} \frac{1}{2}m(\dot{h}^2+x_\theta ^2 \dot{\theta }^2 +2 x_\theta \dot{h} \dot{\theta } \cos {\theta }) + \frac{1}{2}I_\theta {\dot{\theta }^2}, \end{aligned}$$

and the corresponding potential energy is

$$\begin{aligned} V=\frac{1}{2}K_h h^2 + \frac{1}{2}K_\theta \theta ^2. \end{aligned}$$

therefore we can write Lagrangian as \(L=T-V\). We apply Euler–Lagrange equations to write the equation of motion as follows

$$\begin{aligned}&\left[ \begin{array}{cc} m &{} m x_\theta \cos {\theta } \\ m x_\theta \cos {\theta } &{} m x_\theta ^2 + J\\ \end{array} \right] \left[ \begin{array}{l} \ddot{h} \\ \ddot{\theta }\\ \end{array} \right] \nonumber \\&\qquad + \left[ \begin{array}{lc} 0 &{} -m x_\theta \dot{\theta }\sin {\theta } \\ 0 &{} 0\\ \end{array} \right] \left[ \begin{array}{l} \dot{h} \\ \dot{\theta }\\ \end{array} \right] \nonumber \\&\qquad + \left[ \begin{array}{ll} K_h &{} 0 \\ 0 &{} K_{\theta }\\ \end{array} \right] \left[ \begin{array}{l} h \\ \theta \\ \end{array} \right] \nonumber \\&\quad = \left[ \begin{array}{l} L(\theta ,\dot{\theta }) \cos {\theta } \\ M(\theta ,\dot{\theta }) + x_a L(\theta ,\dot{\theta })\\ \end{array} \right] \nonumber \\&\qquad + \left[ \begin{array}{l} -L_{\beta _1} \cos {(\theta + \beta _1)} -L_{\beta _2} \cos {(\theta + \beta _2}) \\ -L_{\beta _1} (e_1 {+} d_1 \cos {\beta _1}){+}L_{\beta _2} (e_2 + d_2 \cos {\beta _2}).\\ \end{array} \right] \nonumber \\ \end{aligned}$$
(7.1)

The above equation is written in the form of a standard robotic equations of motion \( M(q(t))\ddot{q}(t)+C(q(t),\dot{q}(t))\dot{q}(t)+K(q(t))=Q_a (t) + \tau (t)\), where \(q = [h \, \theta ]^T \). We have discussed control applications for such systems in detail in Sect. 1. In addition, we employ a simplified version of this equation to validate our online identification and adaptive control strategy in Sect. 6.2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadashi, S., Bobade, P. & Kurdila, A.J. Online estimation and adaptive control for a class of history dependent functional differential equations. Nonlinear Dyn 92, 1431–1451 (2018). https://doi.org/10.1007/s11071-018-4137-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4137-x

Keywords

Navigation