Skip to main content
Log in

Study about the structure and dynamics of magnetic nanofluids using a mesoscopic simulation approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a new three-dimensional modeling of magnetic nanofluids based on a mesoscopic simulation approach is developed to study the aggregate structure of magnetic nanoparticles in equilibrium. The effect of the solvent is considered explicitly in the present model. The dynamics of a single magnetic nanoparticle is studied in detail. Magnetic nanoparticles are subjected to magnetic dipolar interaction force, steric force and the force exerted by dissipative particles described through the known Lennard-Jones potential, which make them experience translational motion. The corresponding rotational motion is also taken into account, which is caused by magnetic dipolar interaction and applied external magnetic field. The role of the solvent is embodied by using dissipative particles, whose introduction through the above-mentioned mesoscopic method makes the presented model approach the real magnetic nanofluids. This paper displays various structures of magnetic nanoparticles under different physical conditions. The obtained results are supported by experimental and numerical results in the literature. In particular, in the absence/presence of external field, chain structures are formed but their formation mechanisms and features are different, and the reason is analyzed in detail. In addition, there are rings and dense globes formed in the absence of magnetic field. Such study is very meaningful for understanding the macroscopic properties of magnetic nanofluids and extending the applications in biomedical and engineering fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rosensweig, R.E.: Ferrohydrodynamics. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  2. Barrett, M., Deschner, A., Embs, J.P., Rheinstadter, M.C.: Chain formation in a magnetic fluid under the influence of strong external magnetic fields studied by small angle neutron scattering. Soft Matter 7, 6678–6683 (2011)

    Article  Google Scholar 

  3. Gazeau, F., Dubois, E., Bacri, J.-C., Boue, F., Cebers, A., Perzynski, R.: Anisotropy of the structure factor of magnetic fluids under a field probed by small-angle neutron scattering. Phys. Rev. E 65, 031403 (2002)

    Article  Google Scholar 

  4. Butter, K., Bomans, P.H.H., Frederik, P.M., Vroege, G.J., Philipse, A.P.: Derect observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nat. Mater. 2, 88–91 (2003)

    Article  Google Scholar 

  5. Shen, L., Stachowiak, A., Fateen, S.E.K., Laibinis, P.E., Hatton, T.A.: Structure of Alkanoic acid stabilized magnetic fluids. A small-angle neutron and light scattering analysis. Langmuir 17, 288–299 (2001)

    Article  Google Scholar 

  6. Germain, V., Richardi, J., Ingert, D., Pileni, M.P.: Mesostructures of cobalt nanocrystals.1. Experiment and theory. J. Phys. Chem. B. 109, 5541–5547 (2005)

    Article  Google Scholar 

  7. Pop, L.M., Odenbach, S., Wiedenmann, A., Matoussevitch, N., Bonnemann, H.: Microstructure and rheology of ferrofluids. J. Magn. Magn. Mater. 289, 303–306 (2005)

    Article  Google Scholar 

  8. De Gennes, P.G., Pincus, P.A.: Pair correlations in a ferromagnetic colloid. Phys. Condens. Mater. 11, 189–198 (1970)

    Google Scholar 

  9. Zubarev, AYu.: On the theory of transport phenomena in ferrofluids. Effect of chain-like aggregates. Phys. A 392, 72–78 (2013)

    Article  MathSciNet  Google Scholar 

  10. Ivanov, A.O., Wang, Z., Holm, C.: Applying the chain formation model to magnetic properties of aggregated ferrofluids. Phys. Rev. E 69, 031206 (2004)

    Article  Google Scholar 

  11. Camp, P.J., Patey, G.N.: Structure and scattering in colloidal ferrofluids. Phys. Rev. E 62(4), 5403–5408 (2000)

    Article  Google Scholar 

  12. Wang, Z., Holm, C., Muller, H.W.: Molecular dynamics study on the equilibrium magnetization properties and structure of ferrofluids. Phys. Rev. E 66, 021405 (2002)

    Article  Google Scholar 

  13. Andreu, J.S., Camacho, J., Faraudo, J.: Aggregation of superparamagnetic colloids in magnetic fields: the quest for the equilibrium state. Soft Matter 7, 2336–2339 (2011)

    Article  Google Scholar 

  14. Lim, E.W.C., Feng, R.: Agglomeration of magnetic nanoparticles. J. Chem. Phys. 136, 124109 (2012)

    Article  Google Scholar 

  15. Brunet, E., Degre, G., Okkels, F., Tabeling, P.: Aggregation of paramagnetic particles in the presence of a hydrodynamic shear. J. Colloid Interface Sci. 282, 58–68 (2005)

    Article  Google Scholar 

  16. Osaci, M., Cacciola, M.: Study about the nanoparticle agglomeration in a magnetic nanofluid by the Langevin dynamics simulation model using an effective verlet-type algorithm. Microfluid. Nanofluid. 21, 19 (2017)

    Article  Google Scholar 

  17. Usanov, D.A., Postel’ga, A.E., Bochkova, T.S., Gavrilin, V.N.: Dynamics of nanoparticle agglomeration in a magnetic fluid in a varying magnetic field. Tech. Phys. 61(3), 464–466 (2016)

    Article  Google Scholar 

  18. Nakata, K., Hu, Y., Uzun, O., Bakr, O., Stellacci, F.: Chains of superparamagnetic nanoparticles. Adv. Mater. 20, 4294–4299 (2008)

    Article  Google Scholar 

  19. Mirzakhalili, E., Nam, W., Epureanu, B.I.: Reduced-order models for the dynamics of superparamagnetic nanoparticles interacting with cargoes transported by kinesins. Nonlinear Dyn. (2017). https://doi.org/10.1007/s11071-017-3673-0

    Google Scholar 

  20. Hoogerbrugge, P.J., Koelman, J.M.V.A.: Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19(3), 155–160 (1992)

    Article  Google Scholar 

  21. Kong, Y., Manke, C.W., Madden, W.G., Schlijper, A.G.: Simulation of a polymer in solution using the dissipative particle dynamics method. Int. J. Thermophys 15(6), 1093–1101 (1994)

    Article  Google Scholar 

  22. Schlijper, A.G., Hoogerbrugge, P.J., Manke, C.W.: Computer simulation of dilute polymer solutions with the dissipative particle dynamics method. J. Rheol. 39(3), 567–579 (1995)

    Article  Google Scholar 

  23. Kong, Y., Manke, C.W., Madden, W.G., Schlijper, A.G.: Effect of solvent quality on the conformation and relaxation of polymers via dissipative particle dynamics. J. Chem. Phys. 107, 592–602 (1997)

    Article  Google Scholar 

  24. Jiang, W., Huang, J., Wang, Y., Laradji, M.: Hydrodynamic interaction in polymer solutions simulated with dissipative particle dynamics. J. Chem. Phys. 126, 044901 (2007)

    Article  Google Scholar 

  25. Nikunen, P., Vattulainen, I., Karttunen, M.: Reptational dynamics in dissipative particle dynamics simulations of polmer melt. Phys. Rev. E. 75(3), 036713 (2007)

    Article  Google Scholar 

  26. Pan, W., Caswell, B., Karniadakis, G.E.: A low-dimensional model for the red blood cell. Soft Matter 6, 4366–4376 (2010)

    Article  Google Scholar 

  27. Ye, T., Phan-Thien, N., Khoo, B.C., Lim, C.T.: Stretching and relaxation of malaria-infected red blood cells. Biophys. J. 105, 1103–1109 (2013)

    Article  Google Scholar 

  28. Fan, X., Phan-Thien, N., Ng, T.Y., Wu, X., Xu, D.: Microchannel flow of a macromolecular suspension. Phys. Fluids 15(1), 11–21 (2003)

    Article  MATH  Google Scholar 

  29. Satoh, A., Chantrell, R.W.: Application of the dissipative particle dynamics method to magnetic colloidal dispersions. Mol. Phys. 104(20–21), 3287–3302 (2006)

    Article  Google Scholar 

  30. Li, W., Ouyang, J., Zhuang, X.: Dissipative particle dynamics simulation for the microstructures of ferromagnetic fluids. Soft Mater. 14(2), 87–95 (2016)

    Article  Google Scholar 

  31. Cacciola, M., Osaci, M.: Studies about the influence of self-organization of colloidal magnetic nanoparticles on the magnetic neel relaxation time. Colloid J. 78(4), 448–458 (2016)

    Article  Google Scholar 

  32. Haase, C., Nowak, U.: Role of dipole-dipole interactions for hyperthermia heating of magnetic nanoparticles ensembles. Phys. Rev. B. 85(4), 045435 (2012)

    Article  Google Scholar 

  33. Margabandhul, M., Sendhilnathan, S., Senthilkumar, S., Hirthna, K.: Experimental investigation on heat transfer rate of Co-Mn ferrofluids in external magnetic field. Mater. Sci. Pol. 34(2), 427–436 (2016)

    Google Scholar 

  34. Piet, D.L., Straube, A.V., Snezhko, A., Aronson, I.S.: Model of dynamic self-assembly in ferromagnetic suspensions at liquid interfaces. Phys. Rev. E 88, 033024 (2013)

    Article  Google Scholar 

  35. Polyakov, AYu., Lyutyy, T.V., Denisov, S., Reva, V.V., Hanggi, P.: Large-scale ferrofluid simulations on graphics processing units. Comput. Phys. Commun. 184, 1483–1489 (2013)

    Article  Google Scholar 

  36. Espanol, P., Warren, P.: Statistical mechanics of dissipative particle dynamics. Europhys. Lett. 30(4), 191–196 (1995)

    Article  Google Scholar 

  37. Gubin, S.P., Koksharov, Y.A., Khomutov, G.B., Yurkov, G.Y.: Magnetic nanoparticles: preparation, structure and properties. Russ. Chem. Rev. 74(6), 489–520 (2005)

    Article  Google Scholar 

  38. Lv, R., Zhao, Y., Xu, N., Li, H.: Research on the microstructure and transmission characteristics of magnetic fluids film based on the Monte Carlo method. J. Magn. Magn. Mater. 337–338, 23–28 (2013)

    Article  Google Scholar 

  39. Scherer, C., Figueiredo, N.A.M.: Ferrofluids: properties and applications. Braz J. Phys. 35(3A), 718–727 (2005)

    Article  Google Scholar 

  40. Lin, S., Wiesner, M.R.: Theoretical investigation on the steric interaction in colloidal deposition. Langmuir 28(43), 15233–15245 (2012)

    Article  Google Scholar 

  41. Runkana, V., Somasundaran, P., Kapur, P.C.: A population balance model for flocculation of colloidal suspensions bypolymer bridging. Chem. Eng. Sci. 61, 182–191 (2006)

    Article  Google Scholar 

  42. Li, Q., Xuan, Y., Li, B.: Simulation and control scheme of microstructure in magnetic fluids. Sci. China Ser. E-Tech. Sci. 50(3), 371–379 (2007)

    Article  MATH  Google Scholar 

  43. Li, W., Li, Q.: Mesoscopic simulation for the structures of magnetic fluids. Eur. Phys. J. Plus 132, 68 (2017)

    Article  Google Scholar 

  44. Groot, R.D., Warren, P.B.: Dissipative particle dynamics:bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107(11), 4423–4435 (1997)

    Article  Google Scholar 

  45. Satoh, A.: Introduction to Practice of Molecular Simulation: Molecular Dynamics, Monte Carlo, Brownian Dynamics, Lattice Boltzmann, Dissipative Particle Dynamics. Elsevier, Amsterdam (2011)

    Google Scholar 

  46. Liang, S., Zeng, X., Hong, Y.: Lyapunov stability and generalized invariance principle for nonconvex differential inclusions. Control Theory Tech. 14(2), 140–150 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Satoh, A., Chantrell, R.W., Kamiyama, S.-I., Coverdale, G.N.: Two-dimensional Monte Carlo simulations to capture thick chainlike clusters of ferromagnetic particles in colloidal dispersions. J. Colloid Interface Sci. 178, 620–627 (1996)

    Article  Google Scholar 

  48. Satoh, A., Chantrell, R.W., Coverdale, G.N.: Brownian dynamics simulations of ferromagnetic colloidal dispersions in a simple shear flow. J. Colloid Interface Sci. 209, 44–59 (1999)

    Article  Google Scholar 

  49. Huang, J., Wang, Z., Holm, C.: Computer simulations of the structure of colloidal ferrofluids. Phys. Rev. E 71, 061203 (2005)

    Article  Google Scholar 

  50. Satoh, A.: On the structures in a rod-like haematite particle suspension by means of Brownian dynamics simulations. Mol. Phys. 112(16), 2122–2137 (2014)

    Article  Google Scholar 

  51. Zhu, Y., Umehara, N., Ido, Y., Sato, A.: Computer simulation of structures and distributions of particles in MAGIC fluid. J. Magn. Magn. Mater. 302, 96–104 (2006)

    Article  Google Scholar 

  52. Peng, X., Min, Y., Ma, T., Luo, W., Yan, M.: Two-dimensional monte carlo simulations of structures of a suspension comprised of magnetic and nonmagnetic particles in uniform magnetic field. J. Magn. Magn. Mater. 321, 1221–1226 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Grant No. 11471103) and the key research projects of Henan higher education (Grant No. 18B110006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Li, Q. Study about the structure and dynamics of magnetic nanofluids using a mesoscopic simulation approach. Nonlinear Dyn 91, 2141–2155 (2018). https://doi.org/10.1007/s11071-017-4006-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-4006-z

Keywords

Navigation