Skip to main content
Log in

Formation–containment control for networked Euler–Lagrange systems with input saturation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper studies the formation–containment control problem for networked nonlinear Euler–Lagrange systems with input saturation. To realize the concurrency of leaders’ formation and followers’ containment, coordinated formation and containment control algorithms are designed, respectively, such that the formation–containment of multi-agent systems can be reached. Firstly, to handle the constraint of input saturation, a dynamic auxiliary system is introduced for each agent to obtain some auxiliary variables. Then, based on these auxiliary variables, coordinated saturated formation and containment control algorithms are designed for each leader and follower to achieve formation and containment, respectively. Note that the saturation bound of each agent in many proposed coordinated saturated control algorithms depends on the number of each agent’s neighbors, while the formation–containment system is usually large scale and each agent has many neighbors because there are multiple leaders and followers. Our proposed saturated formation–containment control algorithm has the advantage that the saturation bound of each agent is not related with the number of each agent’s neighbors. Finally, numerical simulation is given to illustrate the effectiveness of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ren, W., Beard, R.W.: Distributed Consensus in Multi-vehicle Cooperative Control: Theory and Applications. Springer, Dordrecht (2008)

    Book  MATH  Google Scholar 

  2. Kadowaki, Y., Ishii, H.: Event-based distributed clock synchronization for wireless sensor networks. IEEE Trans. Autom. Control 60(8), 2266–2271 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lee, D., Sanyal, A.K., Butcher, E.A.: Asymptotic tracking control for spacecraft formation flying with decentralized collision avoidance. J. Guid. Control Dyn. 38(4), 587–600 (2015)

    Article  Google Scholar 

  4. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Qian, Y., Wu, X., Lbnxkjbnf, J., Lu, J.A.: Consensus of second-order multi-agent systems with nonlinear dynamics and time delay. Nonlinear Dyn. 78(1), 495–503 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Meng, Z., Ren, W., Cao, Y., You, Z.: Leaderless and leader-following consensus with communication and input delays under a directed network topology. IEEE Trans. Syst. Man Cybern. Part B Cybern. 41(1), 75–88 (2011)

    Article  Google Scholar 

  7. Nedic, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization. IEEE Trans. Autom. Control 54(1), 48–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Miao, Z., Wang, Y., Fierro, R.: Collision-free consensus in multi-agent networks. Automatica 64, 217–225 (2016)

    Article  MATH  Google Scholar 

  9. Wang, X., Hong, Y., Huang, J., Jiang, Z.P.: A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Trans. Autom. Control 55(12), 2891–2895 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao, Y., Ren, W.: Distributed coordinated tracking with reduced interaction via a variable structure approach. IEEE Trans. Autom. Control 57(1), 33–48 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42(7), 1177–1182 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sun, Y., Chen, L., Ma, G., Li, C.: Adaptive neural network tracking control for multiple uncertain Euler–Lagrange systems with communication delays. J. Frankl. Inst. 354(7), 2677–2698 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, L., Lv, Y., Li, C., Ma, G.: Cooperatively surrounding control for multiple Euler–Lagrange systems subjected to uncertain dynamics and input constraints. Chin. Phys. B 25(12), 128701 (2016)

    Article  Google Scholar 

  14. Wen, G., Duan, Z., Chen, G., Yu, W.: Consensus tracking of multi-agent systems with Lipschitz-type node dynamics and switching topologies. IEEE Trans. Circuits Syst. I Regul. Pap. 61(2), 499–511 (2014)

    Article  MathSciNet  Google Scholar 

  15. Ji, M., Ferrari-Trecate, G., Egerstedt, M., Buffa, A.: Containment control in mobile networks. IEEE Trans. Autom. Control 53(8), 1972–1975 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Asadi, M.M., Ajorlou, A., Aghdam, A.G.: Distributed control of a network of single integrators with limited angular fields of view. Automatica 63, 187–197 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cao, Y., Stuart, D., Ren, W., Meng, Z.: Distributed containment control for multiple autonomous vehicles with double-integrator dynamics: Algorithms and experiments. IEEE Trans. Control Syst. Technol. 19(4), 929–938 (2011)

    Article  Google Scholar 

  18. Dong, X., Xi, J., Lu, G., Zhong, Y.: Formation control for high-order linear time-invariant multiagent systems with time delays. IEEE Trans. Control Netw. Syst. 1(1), 232–240 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dong, X., Hu, G.: Time-varying output formation for linear multi-agent systems via dynamic output feedback control. IEEE Trans. Control Netw. Syst. PP(99), 1–1 (2015)

    Google Scholar 

  20. Huang, J., Dou, L., Fang, H., Chen, J., Yang, Q.: Distributed backstepping-based adaptive fuzzy control of multiple high-order nonlinear dynamics. Nonlinear Dyn. 81(1–2), 1–13 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mei, J., Ren, W., Ma, G.: Distributed coordinated tracking with a dynamic leader for multiple Euler–Lagrange systems. IEEE Trans. Autom. Control 56(6), 1415–1421 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, B., Hu, Q., Yu, Y., Ma, G.: Observer-based fault-tolerant attitude control for rigid spacecraft. IEEE Trans. Aerosp. Electron. Syst. 53(5), 2572–2582 (2017)

    Article  Google Scholar 

  23. Zhao, Y., Duan, Z., Wen, G.: Distributed finite-time tracking of multiple Euler–Lagrange systems without velocity measurements. Int. J. Robust Nonlinear Control 25(11), 1688–1703 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mei, J., Ren, W., Li, B., Ma, G.: Distributed containment control for multiple unknown second-order nonlinear systems with application to networked Lagrangian systems. IEEE Trans. Neural Netw. Learn. Syst. 26(9), 1885–1899 (2015)

    Article  MathSciNet  Google Scholar 

  25. Mei, J., Ren, W., Ma, G.: Distributed containment control for Lagrangian networks with parametric uncertainties under a directed graph. Automatica 48(4), 653–659 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hu, Q., Zhang, J., Friswell, M.I.: Finite-time coordinated attitude control for spacecraft formation flying under input saturation. J. Dyn. Syst. Meas. Control 137(6), 061012 (2015)

    Article  Google Scholar 

  27. Dimarogonas, D.V., Egerstedt, M., Kyriakopoulos, K.J.: A leader-based containment control strategy for multiple unicycles. In: 45th IEEE Conference on Decision and Control, pp. 5968–5973 (2006)

  28. Yu, B., Dong, X., Shi, Z., Zhong, Y.: Formation–containment control for unmanned aerial vehicle swarm system. In: 33rd Chinese Control Conference (CCC), pp. 1517–1523 (2014)

  29. Chen, L., Li, C., Sun, Y., Ma, G., Wang, W.: Adaptive formation–containment control for multiple Euler–Lagrange systems with uncertainties and disturbances. In: 35th Chinese Control Conference, pp. 10690–10695 (2016)

  30. Dong, X., Shi, Z., Lu, G., Zhong, Y.: Formation–containment analysis and design for high-order linear time-invariant swarm systems. Int. J. Robust Nonlinear Control 24(7), 6296–6302 (2014)

    Article  Google Scholar 

  31. Dong, X., Li, Q., Ren, Z., Zhong, Y.: Formation–containment control for high-order linear time-invariant multi-agent systems with time delays. J. Frankl. Inst. 352(9), 3564–3584 (2015)

    Article  MathSciNet  Google Scholar 

  32. Zheng, B., Mu, X.: Formation–containment control of second-order multi-agent systems with only sampled position data. Int. J. Syst. Sci. 47(15), 3609–3618 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, Y.W., Liu, X.K., Xiao, J.W., Lin, X.N.: Output formation–containment of coupled heterogeneous linear systems under intermittent communication. J. Frankl. Inst. 354(1), 392–414 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Chen, L.M., Li, C.J., Mei, J., Ma, G.F.: Adaptive cooperative formation–containment control for networked Euler–Lagrange systems without using relative velocity information. IET Control Theory Appl. 11(9), 1450–1458 (2017)

    Article  MathSciNet  Google Scholar 

  35. Hu, Q.: Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits. Nonlinear Dyn. 55(4), 301–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ren, W.: On consensus algorithms for double-integrator dynamics. IEEE Trans. Autom. Control 53(6), 1503–1509 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, T., Meng, Z., Dimarogonas, D.V., Johansson, K.H.: Global consensus for discrete-time multi-agent systems with input saturation constraints. Automatica 50(2), 499–506 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, Q., Gao, H.: Global consensus of multiple integrator agents via saturated controls. J. Frankl. Inst. 350(8), 2261–2276 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lyu, J., Qin, J., Gao, D., Liu, Q.: Consensus for constrained multi-agent systems with input saturation. Int. J. Robust Nonlinear Control 26(14), 2977–2993 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Su, H., Chen, M.Z.Q., Wang, X.: Global coordinated tracking of multi-agent systems with disturbance uncertainties via bounded control inputs. Nonlinear Dyn. 82(4), 2059–2068 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Abdessameud, A., Tayebi, A.: On consensus algorithms for double-integrator dynamics without velocity measurements and with input constraints. Syst. Control Lett. 59(12), 812–821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kelly, R., Santibanez, V., Loria, A.: Control of Robot Manipulators in Joint Space. Springer, London (2005)

    Google Scholar 

  43. Spong, M., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, New York (2006)

    Google Scholar 

  44. Lewis, F.L., Zhang, H., Hengster-Movric, K., Das, A.: Cooperative Control of Multi-agent Systems: Optimal and Adaptive Design Approaches. Springer, London (2014)

    Book  MATH  Google Scholar 

  45. Rockafellar, R.: Convex Analysis. Princeton University Press, New Jersey (1972)

    MATH  Google Scholar 

  46. Berman, A., Plemmons, R.: Nonnegative Matrices in the Mathematical Sciences. Academic Press, INC, New York (1979)

    MATH  Google Scholar 

  47. Qu, Z.: Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles. Springer, London (2009)

    MATH  Google Scholar 

  48. Dimarogonas, D., Kyriakopoulos, K.: A connection between formation infeasibility and velocity alignment in kinematic multi-agent systems. Automatica 44(10), 2648–2654 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Alfriend, K.T., Vadali, S.R., Gurfil, P., How, J., Breger, L.S.: Spacecraft Formation Flying: Dynamics, Control and Navigation, vol. 23(3), pp. 385–390. Butterworth-Heinemann, Oxford (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanning Guo.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61673135, 61403103, 61603114).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Chen, L., Guo, Y. et al. Formation–containment control for networked Euler–Lagrange systems with input saturation. Nonlinear Dyn 91, 1307–1320 (2018). https://doi.org/10.1007/s11071-017-3946-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3946-7

Keywords

Navigation