Skip to main content
Log in

Lie symmetry analysis, soliton and numerical solutions of boundary value problem for variable coefficients coupled KdV–Burgers equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this article, an initial and boundary value problem for variable coefficients coupled KdV–Burgers equation is considered. With the help of Lie group approach, initial and boundary value problem for variable coefficients coupled KdV–Burgers equation reduced to an initial value problem for nonlinear third-order ordinary differential equations (ODEs). Moreover, the systems of ODEs are solved to obtain soliton solutions. Further, classical fourth-order Runge–Kutta method is applied to systems of ODEs for constructing numerical solutions of coupled KdV–Burgers equation. Numerical solutions are computed, and accuracy of numerical scheme is assessed by applying the scheme half mesh principal to calculate maximum errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Su, C.H., Gardner, C.S.: Drivation of the Korteweg–de Vries and Burgers equation. J. Math. Phys. 10, 536–539 (1969)

    Article  MATH  Google Scholar 

  2. Wijngaarden, L.V.: On the motion of gas bubbles in a perfect fluid. Annu. Rev. Fluid Mech. 4, 369–373 (1972)

    Article  Google Scholar 

  3. Johnson, R.S.: Shallow water waves on a viscous fluid—the undular bore. Phys. Fluids 15, 1693–1699 (1972)

    Article  MATH  Google Scholar 

  4. Hu, P.N.: Collisional theory of shock and nonlinear waves in a plasma. Phys. Fluids 15, 854–864 (1972)

    Article  Google Scholar 

  5. Korteweg, D.J., Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895)

    Article  MATH  MathSciNet  Google Scholar 

  6. Burgers, J.M.: A Mathematical Model Illustrating the Theory of Turbulence. Academic Press, New York (1948)

    Book  Google Scholar 

  7. Feudel, F., Steudel, H.: Nonexistence of prolongation structure for the Korteweg–de Vries–Burgers equation. Phys. Lett. A 107, 5–8 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Johnson, R.S.: A nonlinear equation incorporating damping and dispersion. J. Fluid Mech. 42, 49–60 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  9. Grad, H., Hu, P.N.: Unied shock prole in a plasma. Phys. Fluids 10, 2596–2602 (1967)

    Article  Google Scholar 

  10. Canosa, J., Gazdag, J.: The Korteweg–de Vries–Burgers equation. J. Comput. Phys. 23, 393–403 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dauletiyarov, K.Z.: Investigation of the dierence method for the Bona–Smith and Burgers–Korteweg–deVries equations. Zh. Vychisl. Mat. i. Mat. Fiz. 24, 383–402 (1984)

    MATH  MathSciNet  Google Scholar 

  12. Avilov, V.V., Krichever, I.M., Novikov, S.P.: Evolution of the Whiteham zone in the Korteweg–de Vries theory. Soviet. Phys. Dokl. 32, 345–349 (1987)

    MATH  Google Scholar 

  13. Bona, J.L., Schonbek, M.E.: Traveling wave solutions to Korteweg–de Vries–Burgers equation. Proc. R. Soc. Edinb. 101, 207–226 (1985)

    Article  MATH  Google Scholar 

  14. Guan, K.Y., Gao, G.: The qualitative theory of the mixed Korteweg–de Vries–Burgers equation. Sci. Sin. Ser. A 30, 64–73 (1987)

    Google Scholar 

  15. Guan, K.Y., Lei, J.Z.: Integrability of second order antonomous system. Ann. Differ. Equ. 10, 117–135 (2002)

    MATH  Google Scholar 

  16. Gao, J.X., Lei, J.Z., Guan, K.Y.: Integrable condition on traveling wave solutions of Burgers–KdV equation. J. North. Jiaotong Univ. 27, 38–42 (2003)

    Google Scholar 

  17. Shu, J.J.: The proper analytical solution of the Korteweg–de Vries equation. J. Phys. A Math. Gen. 20, 49–56 (1987)

    Article  MathSciNet  Google Scholar 

  18. Drazin, P., Johnson, R.: Solitons: An Introduction. Cambridge Univesity Press, New York (1989)

    Book  MATH  Google Scholar 

  19. Shaojie, Y., Cuncai, H.: Lie symmetry reductions and exact solutions of a coupled KdV–Burgers equation. Appl. Math. Comput. 234, 579–583 (2014)

    MATH  MathSciNet  Google Scholar 

  20. Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  21. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, New York (1989)

    Book  MATH  Google Scholar 

  22. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  23. Chou, T.: Lie Group and Its Applications in Differential Equations. Science Press, Beijing (2001)

    Google Scholar 

  24. Kaur, L., Gupta, R.K.: Kawahara equation and modified Kawahara equation with time dependent coefficients: symmetry analysis and generalized \(\left( {{G}^{\prime }/G} \right)\)-expansion method. Math. Methods Appl. Sci. 36, 584–601 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kumar, V., Gupta, R.K., Jiwari, R.: Comparative study of travelling wave and numerical solutions for the coupled short pulse (CSP) equation. Chin. Phys. B 22, 050201 (2013)

    Article  Google Scholar 

  26. Johnpillai, A.G., Kara, A.H., Biswas, A.: Symmetry reduction, exact group-invariant solutions and conservation laws of the Benjamin–Bona–Mahoney equation. Appl. Math. Lett. 26, 376–381 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kumar, V., Gupta, R.K., Jiwari, R.: Painlevé analysis, Lie symmetries and exact solutions for variable coefficients Benjamin–Bona–Mahony–Burger (BBMB) equation. Commun. Theor. Phys. 60, 175–182 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gupta, R.K., Kumar, V., Jiwari, R.: Exact and numerical solutions of coupled Short Pulse equation with time-dependent coefficients. Nonlinear Dyn. 79, 455–464 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Singh, M., Gupta, R.K.: Exact solutions for nonlinear evolution equations using novel test function. Nonlinear Dyn. 86, 1171–1182 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  30. Singla, K., Gupta, R.K.: On invariant analysis of some time fractional nonlinear systems of partial differential equations. J. Math. Phys. 57, 101504–14 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  31. Rai, P., Sharma, K.K.: Parameter uniform numerical method for singularly perturbed differential–difference equations with interior layer. Int. J. Comput. Math. 88, 3416–3435 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rai, P., Sharma, K.K.: Numerical analysis of singularly perturbed delay differential turning point problem. Appl. Math. Comput. 218, 3483–3498 (2011)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Kumar.

Appendix

Appendix

At the present appendix, we find the connection between the methods used in this paper to find the exact and numerical solutions. We compared the exact solutions obtained in Sect. 3 under the subalgebra 3.1, with the numerical solution by using the numerical technique RK4 method used in Sect. 4. The acquiring of the whole computational work is done with the help of the absolute errors \(E_a \), relative error \(E_{ r}\) and percentage error \(E_{ p} \) given by the following formulas

$$\begin{aligned}&\hbox {Absolute error} E_a =\left| { u - \bar{{u}} } \right| \nonumber \\&\hbox {Relative error} E_r =\left| { \frac{u - \bar{{u}} }{u} } \right| \nonumber \\&\hbox {Percentage error} E_r =\left| { \frac{u - \bar{{u}} }{u} } \right| \times 100, \end{aligned}$$

where u and \(\bar{{u}}\) denote the exact and numerical solution of the problem.

Table 9 Absolute error, Relative error and Percentage error

For numerical solution, we start with initial values at \(\xi = 1,\) with the restriction on the arbitrary constants of ODEs (3.1) as \(K_1 = 0, K_2 = \frac{1}{8 }, K_3 = \frac{3 K_5 }{2 K_2 }, K_4 = 0, \lambda _1 = -\frac{1}{2}, \lambda _2 = -2\) and initial approximation by solutions (3.3) with the restrictions on the arbitrary constants as \(a_1 = b_1 = -8 K_2 .\) Then, the reduced ODEs system (3.1) for KdV–Burgers equation transforms into the following initial value problem (IVP)

$$\begin{aligned}&-\frac{1}{2} F - {F}' \xi - \frac{3}{2} F {F}' + \frac{1}{8} {F}''' = 0 \nonumber \\&-2 G - {G}' \xi + \frac{3}{16} G {G}' + {F}''' = 0. \end{aligned}$$
(5.1)

with initial conditions

$$\begin{aligned} F(1)= & {} 0, {F}'(1) = 3, {F}''(1) = -6\nonumber \\ G\left( 1 \right)= & {} -2, \quad {G}'\left( 1 \right) = 2. \end{aligned}$$
(5.2)

In that case, the comparison between exact and numerical solution with respect to IVP (5.15.2) is depicted below with the help of Fig. 6. Also, acquiring of the computational work is presented here with the help of Table 9. Form these results, we conclude that the numerical solutions are in good agreement with the exact solution. The results reported here provide further evidence of the usefulness of the fourth-order Runge–Kutta method for solving nonlinear equations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Alqahtani, A. Lie symmetry analysis, soliton and numerical solutions of boundary value problem for variable coefficients coupled KdV–Burgers equation. Nonlinear Dyn 90, 2903–2915 (2017). https://doi.org/10.1007/s11071-017-3851-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3851-0

Keywords

Navigation