Skip to main content
Log in

Nonlinear characteristic of a circular composite plate energy harvester: experiments and simulations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A piezoelectric energy harvester is investigated with the focus on its nonlinear behavior. The harvester consists of a circular composite plate with the clamped boundary, a proof mass and two steel rings. A reduced-order model of the harvester is established, and the parameters are identified from the experimental data. A technique is proposed to identify electrical parameters with the outcomes agreeing with the theoretical values, and a fifth-order polynomial is employed to approximate the nonlinear restoring force. Both the experimental and the numerical results demonstrate that the harvester changes its characteristic from linearity to a softening nonlinearity and finally to a combined softening and hardening nonlinearity as the excitation increases from low to high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kaur, N., Bhalla, S.: Combined energy harvesting and structural health monitoring potential of embedded piezo-concrete vibration sensors. J. Energy Eng. 141(4), D4014001 (2014)

    Article  Google Scholar 

  2. Jiang, X.Z., Wang, J., Li, Y.C., Yao, J.: Energy harvesting for powering wireless sensor networks in low-frequency and large-force environments. J. Mech. Eng. Sci. 229(11), 1953–1964 (2015)

    Article  Google Scholar 

  3. Erturk, A., Inman, D.J.: Piezoelectric Energy Harvesting. Wiley, Chichester (2011)

    Book  Google Scholar 

  4. Elvin, N.G., Elvin, A.A.: An experimentally validated electromagnetic energy harvester. J. Sound Vib. 330(10), 2314–2324 (2011)

    Article  Google Scholar 

  5. Le, C.P., Halvorsen, E., Sen, O.S.R., Yeatman, E.M.: Microscale electrostatic energy harvester using internal impacts. J. Intell. Mater. Syst. Struct. 23(13), 1409–1421 (2012)

    Article  Google Scholar 

  6. Adly, A., Davino, D., Giustiniani, A., Visone, C.: Experimental tests of a magnetostrictive energy harvesting device toward its modeling. J. Appl. Phys. 107(9), 09A935 (2010)

    Article  Google Scholar 

  7. Belhora, F., Cottinet, P.J., Guyomar, D., Petit, L., Lebrun, L., Hajjaji, A., Maroubi, M.H., Boughaleb, Y.: Optimization of energy harvesting conversion using the hybridization of electrostrictive polymers and electrets. Sens. Actuat. A Phys. 189(2), 390–398 (2013)

    Article  Google Scholar 

  8. Elvin, N., Erturk, A.: Advances in Energy Harvesting Methods. Springer, New York (2013)

    Book  Google Scholar 

  9. Yang, Z.B., Zu, J.: High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism. Energy Convers. Manag. 88, 829–833 (2014)

    Article  Google Scholar 

  10. Stanton, S.C., Erturk, A., Mann, B.P., Inman, D.J.: Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification. J. Appl. Phys. 108(7), 074903 (2010)

    Article  Google Scholar 

  11. Erturk, A., Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J. Vib. Acoust. 130(4), 1257–1261 (2008)

    Article  Google Scholar 

  12. Stanton, S.C., Erturk, A., Mann, B.P., Dowell, E.H., Inman, D.J.: Nonlinear nonconservative behavior and modeling of piezoelectric energy harvesters including proof mass effects. J. Intell. Mater. Syst. Struct. 23(2), 183–199 (2012)

    Article  Google Scholar 

  13. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Phenomena and modeling of piezoelectric energy harvesting from freely oscillating cylinders. Nonlinear Dyn. 70(2), 1377–1388 (2012)

    Article  MathSciNet  Google Scholar 

  14. Wang, S., Lam, K.H., Sun, C.L., Kwok, K.W., Chan, H.L.W., Guo, M.S., Zhao, X.Z.: Energy harvesting with piezoelectric drum transducer. Appl. Phys. Lett. 90(11), 113506 (2007)

    Article  Google Scholar 

  15. Yuan, T.C., Yang, J., Song, R.G., Liu, X.W.: Vibration energy harvesting system for railroad safety based on the running vehicles. Smart Mater. Struct. 23(12), 125046 (2014)

    Article  Google Scholar 

  16. Kim, S.W., Clark, W.W., Wang, Q.M.: Piezoelectric energy harvesting with a clamped circular plate: analysis. J. Intell. Mater. Syst. Struct. 16(10), 847–854 (2005)

    Article  Google Scholar 

  17. Kim, S.W., Clark, W.W., Wang, Q.M.: Piezoelectric energy harvesting with a clamped circular plate: experimental study. J. Intell. Mater. Syst. Struct. 16(10), 855–863 (2005)

    Article  Google Scholar 

  18. Zhao, X., Yang, T.Q., Dong, Y., Wang, X.C.: Energy harvester array using piezoelectric circular diaphragm for broadband vibration. Appl. Phys. Lett. 104(22), 223904 (2014)

    Article  Google Scholar 

  19. Wang, W., Huang, R.J., Huang, C.J., Li, L.F.: Energy harvester array using piezoelectric circular diaphragm for rail vibration. Acta Mech. Sin. 30(6), 884–888 (2014)

    Article  Google Scholar 

  20. Yuan, J.B., Xie, T., Chen, W.S., Jiang, S.N.: Performance of a drum transducer for scavenging vibration energy. J. Intell. Mater. Syst. Struct. 20(14), 1771–1777 (2009)

    Article  Google Scholar 

  21. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. 67(2), 1147–1160 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ramlan, R., Brennan, M.J., Mace, B.R., Kovacic, I.: Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn. 59(4), 545–558 (2010)

    Article  MATH  Google Scholar 

  23. Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94(25), 254102 (2009)

  24. Wu, H., Tang, L.H., Yang, Y.W., Soh, C.K.: Development of a broadband nonlinear two-degree-of-freedom piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 25(14), 1875–1889 (2014)

  25. Ibrahim, A., Towfighian, S.: Younis. M.I.: Dynamics of transition regime in bistable vibration energy harvesters. J. Vib. Acoust. 139(5), 051008 (2017)

  26. Zhou, S.X., Cao, J.Y., Lin, J.: Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters. Nonlinear Dyn. 86(3), 1599–1611 (2016)

    Article  Google Scholar 

  27. Chen, L.Q., Jiang, W.A., Panyam, M., Daqaq, M.F.: A broadband internally resonant vibratory energy harvester. J. Vib. Acoust. 138(6), 061007 (2016)

    Article  Google Scholar 

  28. Jiang, W.A., Chen, L.Q.: A piezoelectric energy harvester based on internal resonance. Acta Mech. Sin. 31(2), 223–228 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  29. Chen, L.Q., Jiang, W.A.: Internal resonance energy harvesting. J. Appl. Mech. 82(3), 031004 (2015)

    Article  Google Scholar 

  30. Eslami, M.: Soliton-like solutions for the coupled Schrodinger–Boussinesq equation. Optik 126(23), 3987–3991 (2016)

    Article  Google Scholar 

  31. Eslami, M., Mirzazadeh, M.: Optical solitons with Biswas–Milovic equation for power law and dual-power law nonlinearities. Nonlinear Dyn. 83(1–2), 731–738 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  32. Nayfeh, A.H.: Nonlinear Interactions: Analytical, Computational and Experimental Methods. Wiley, New York (2000)

    MATH  Google Scholar 

  33. Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, New York (2004)

    Book  MATH  Google Scholar 

  34. Xue, H., Hu, H.P.: Nonlinear characteristics of a circular plate piezoelectric harvester with relatively large deflection near resonance. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(9), 2092–2096 (2008)

    Article  MathSciNet  Google Scholar 

  35. Hu, Y.D., Wang, T.: Nonlinear free vibration of a rotating circular plate under the static load in magnetic field. Nonlinear Dyn. 85(3), 1825–1835 (2016)

    Article  MathSciNet  Google Scholar 

  36. Vogl, G.W., Nayfeh, A.H.: Primary resonance excitation of electrically actuated clamped circular plates. Nonlinear Dyn. 47(1–3), 181–192 (2007)

    MATH  Google Scholar 

  37. Hedrih, K.R., Simonovic, J.D.: Non-linear dynamics of the sandwich double circular plate system. Int. J. Non-Linear Mech. 45(9), 902–918 (2010)

    Article  Google Scholar 

  38. Hedrih, K.R., Simonovic, J.D.: Multi-frequency analysis of the double circular plate system non-linear dynamics. Nonlinear Dyn. 67(3), 2299–2315 (2012)

    Article  MathSciNet  Google Scholar 

  39. Tvedt, L.G.W., Nguyen, D.S., Halvorsen, E.: Nonlinear behavior of an electrostatic energy harvester under wide and narrowband excitation. J. Microelectormech. Syst. 19(2), 305–315 (2010)

    Article  Google Scholar 

  40. Kovacic, I., Brennan, M.J., Lineton, B.: Effect of a static force on the dynamic behaviour of a harmonically excited quasi-zero stiffness system. J. Sound Vib. 325(4–5), 870–883 (2009)

    Article  Google Scholar 

  41. Amabili, M., Alijani, F., Delannoy, J.: Damping for large-amplitude vibrations of plates and curved panels, part 2: identification and comparisons. J. Non-Linear Mech. 85, 226–240 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Key Program of National Natural Science of China (No. 11232009), the National Natural Science Foundation of China (No. 51575334) and the Innovation Program of Shanghai Municipal Education Commission (14ZZ158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Qun Chen.

Appendix: Electricity parameters derived from the elasticity theory

Appendix: Electricity parameters derived from the elasticity theory

The parameters of piezoelectric ceramics are listed in Table 5. The thin composite plate has an axially symmetric structure. So the polar coordinate of the plate is established in Fig. 12. Because of the proof mass attached at the center of the plate, the structure is consider as a circular plate with a corresponding concentrated force and the clamped boundary condition.

The dynamic deflection can be derived from the elasticity solution [14] as

$$\begin{aligned} \begin{aligned} w\left( {r,t} \right) =&\,z\left( t \right) \phi \left( r \right) \\ \hbox {where},\,\, \phi \left( r \right) =&\,\frac{r^{2}\left( {2\ln r-2\ln R_\mathrm{s} -1} \right) +R_\mathrm{s}^2 }{R_\mathrm{s}^{2}} \end{aligned} \end{aligned}$$
(A1)

In Eq. (A1), w(rt) is the deflection of the plate in the z-direction at position r and time t, ris the radius of deflection point. The static deflection curve \(\phi (r)\) is used to approximate fundamental vibrating mode of the circular composite plate.

Fig. 12
figure 12

The structure of circular composite plate

Unlike beam models, there are two stress terms in the plate. As shown in Fig. 12, one is the radial direction stress \(\sigma _{r}\) and the other is the angular direction stress \(\sigma _{\theta }\). For the linear distribution of the bending strain, the average strain for the PZT is employed in the calculation. The distance from the center of the PZT layer to the center of the composite plate is (\(h_{\mathrm{p}}+h_{\mathrm{b}})/2\). Thus the two average strains terms, \(\varepsilon _{r}\) and \(\varepsilon _{\theta }\) in the PZT layer can be expressed as

$$\begin{aligned} \varepsilon _r= & {} -\frac{h_\mathrm{p} +h_\mathrm{b} }{2}\frac{\partial ^{2}w\left( {r,t} \right) }{\partial r^{2}} \end{aligned}$$
(A2a)
$$\begin{aligned} \varepsilon _\theta= & {} -\frac{h_\mathrm{p} +h_\mathrm{b} }{2r}\frac{\partial w\left( {r,t} \right) }{\partial r} \end{aligned}$$
(A2b)

The average strains terms are calculated by the classical elasticity solution, and the piezoelectric constitutive equations can be written for the circular plate

$$\begin{aligned}&\varepsilon _r =s_{rr}^E \left( {\sigma _r -\mu \sigma _\theta } \right) -d_{zr} E_z \end{aligned}$$
(A3a)
$$\begin{aligned}&\varepsilon _\theta =s_{rr}^E \left( {\sigma _\theta -\mu \sigma _r } \right) -d_{zr} E_z \end{aligned}$$
(A3b)
$$\begin{aligned}&D_z =-d_{zr} \left( {\sigma _r +\sigma _\theta } \right) +\varepsilon _{zz}^{T} E_z \end{aligned}$$
(A3c)

where \(\mu \) is Poisson’ s ratio of the PZT layer, \(\varepsilon _{zz}^{T}\) is the permittivity of PZT, \(d_{zr}\) is the piezoelectric constant, \(D_{z}\) is the electric displacement, \(E_{z}\) is the electric field, and \(s_{rr}^{E}\) is the elastic compliance constant for PZT. By Using Eqs. (A3a) and (A3b), one can describe the stress in terms of strain and electric field

$$\begin{aligned} \sigma _r= & {} \frac{1}{s_{rr}^E \left( {1-\mu ^{2}} \right) }\left[ {\varepsilon _r +\mu \varepsilon _\theta +\left( {1+\mu } \right) d_{zr} E_z } \right] \end{aligned}$$
(A4a)
$$\begin{aligned} \sigma _\theta= & {} \frac{1}{s_{rr}^E \left( {1-\mu ^{2}} \right) }\left[ {\mu \varepsilon _r +\varepsilon _\theta +\left( {1+\mu } \right) d_{zr} E_z } \right] \end{aligned}$$
(A4b)

Inserting Eq. (A4) into (A3c) leads to the relationship between the electric displacement and the strain. Because of \(E_{3}=-u(t)/h_{\mathrm{p}}\), it can be expressed as

$$\begin{aligned} D_z= & {} -\frac{d_{zr} }{s_{rr}^E \left( {1-\mu } \right) }\left( {\varepsilon _r +\varepsilon _\theta } \right) \nonumber \\&-\frac{\varepsilon _{zz}^T s_{rr}^E \left( {1-\mu } \right) -2d_{zr}^2 }{s_{rr}^E \left( {1-\mu } \right) h_\mathrm{p} }u\left( t \right) \end{aligned}$$
(A5)

Charge Q(t) can be obtained by integrating Eqs. (A2) and (A5) on the electrode surface,

$$\begin{aligned} Q\left( t \right)= & {} \frac{n_\mathrm{p} \pi d_{zr} \left( {h_\mathrm{p} +h_\mathrm{b} } \right) }{2s_{rr}^E \left( {1-\mu } \right) }\int \limits _0^{R_\mathrm{p} } \left( r\frac{\partial ^{2}w\left( {r,t} \right) }{\partial r^{2}}\right. \nonumber \\&\left. +\frac{\partial w\left( {r,t} \right) }{\partial r} \right) \mathrm{d}r\nonumber \\&-\,n_\mathrm{p} \pi R_\mathrm{p}^2 \frac{\varepsilon _{zz}^T s_{rr}^E \left( {1-\mu } \right) -2d_{zr}^2 }{s_{rr}^E \left( {1-\mu } \right) h_\mathrm{p} }\frac{u\left( t \right) }{n_\mathrm{s} } \end{aligned}$$
(A6)

where the number of the PZT plate in parallel connection is \(n_{\mathrm{p}}\) and in series connection is \(n_{\mathrm{s}}\).

The output current can be calculated by taking the derivative of Eq. (A6) with respect to the time,

$$\begin{aligned} i\left( t \right)= & {} \frac{\mathrm{d}Q\left( t \right) }{\mathrm{d}t}\nonumber \\= & {} \frac{n_\mathrm{p} \pi d_{zr} \left( {h_\mathrm{p} +h_\mathrm{b} } \right) }{2s_{rr}^E \left( {1-\mu } \right) }\int \limits _0^{R_\mathrm{p} } \left( r\frac{\partial ^{2}w\left( {r,t} \right) }{\partial r^{2}\partial t}\right. \nonumber \\&\left. +\frac{\partial w\left( {r,t} \right) }{\partial r\partial t} \right) \mathrm{d}r-C_\mathrm{p} \dot{u}\left( t \right) \end{aligned}$$
(A7)

The equivalent capacitance \(C_{\mathrm{p}}\) is expressed as

$$\begin{aligned} C_\mathrm{p} =\pi R_\mathrm{p}^2 n_\mathrm{p} \frac{\varepsilon _{zz}^T s_{rr}^E \left( {1-\mu } \right) -2d_{zr}^2 }{s_{rr}^E \left( {1-\mu } \right) h_\mathrm{p} n_\mathrm{s} } \end{aligned}$$
(A8)

Based on Eqs. (A1) and (A7) with \(u(t)=i(t)R_{\mathrm{L}}\), the electromechanical equation is expressed as.

$$\begin{aligned} -\eta \dot{z}\left( t \right) +C_\mathrm{p} \dot{u}\left( t \right) +u\left( t \right) /R_\mathrm{L} =0 \end{aligned}$$
(A9)

and the electromechanical coupling coefficient \(\eta \) is expressed as

$$\begin{aligned} \eta =\frac{4n_\mathrm{p} \pi d_{zr} \left( {h_\mathrm{p} +h_\mathrm{b} } \right) \gamma ^{2}\ln \gamma }{s_{rr}^E \left( {1-\mu } \right) } \end{aligned}$$
(A10)

where \(\gamma \) is the radius ratio \(\gamma ={R}_{\mathrm{p}}/R_{\mathrm{s}}\), and \(R_{\mathrm{L}}\) is the load resistance.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, T., Yang, J. & Chen, LQ. Nonlinear characteristic of a circular composite plate energy harvester: experiments and simulations. Nonlinear Dyn 90, 2495–2506 (2017). https://doi.org/10.1007/s11071-017-3815-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3815-4

Keywords

Navigation