Skip to main content
Log in

A low-cost optimization framework to solve muscle redundancy problem

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Prediction of muscle activations based on optimization procedures mostly leads to a prohibitive computational effort. To overcome this problem, an optimization framework by reformulation of the so-called method of extended inverse dynamics (EID) was developed. A planar, seven-segment model with sixteen muscle groups was used to represent human neuromusculoskeletal dynamics. The muscle activations were estimated based on two methods: EID, which treats the system dynamics (compatibility between muscular and skeletal torques), as an equality constraint, and the proposed method, which employs unconstrained system dynamics of EID (USDEID). The proposed method is based on the idea that the EID equality constraint, which is difficult to satisfy, can be eliminated by reformulation of the governing equations and optimization variables, which not only relaxes the optimization problem and leads to less optimization parameters, but also guarantees the full compatibility of the system dynamics. The comparison of simulation results of optimal muscle activations against experimental data showed a reasonable agreement for both methods during half of a gait cycle. Optimization results showed that USDEID is not only more accurate than EID in terms of the compatibility between the skeletal and muscular system dynamics, but also approximately eight times faster for ten random initial values. USDEID may be used to predict muscle activations, when the computational cost becomes prohibitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li, X., Liu, J., Li, S., Wang, Y.-C., Zhou, P.: Examination of hand muscle activation and motor unit indices derived from surface EMG in chronic stroke. IEEE Trans. Biomed. Eng. 61(12), 2891–2898 (2014)

    Article  Google Scholar 

  2. Sartori, M., Farina, D., Lloyd, D.G.: Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization. J. Biomech. 47(15), 3613–3621 (2014)

    Article  Google Scholar 

  3. Ackermann, M., van den Bogert, A.J.: Optimality principles for model-based prediction of human gait. J. Biomech. 43(6), 1055–1060 (2010). doi:10.1016/j.jbiomech.2009.12.012

    Article  Google Scholar 

  4. Knarr, B.A., Higginson, J.S.: Practical approach to subject-specific estimation of knee joint contact force. J. Biomech. 48(11), 2897–2902 (2015)

    Article  Google Scholar 

  5. Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007)

    Article  Google Scholar 

  6. Farahani, S.D., Andersen, M.S., de Zee, M., Rasmussen, J.: Optimization-based dynamic prediction of kinematic and kinetic patterns for a human vertical jump from a squatting position. Multibody Syst. Dyn. 36(1), 37–65 (2016)

    Article  MathSciNet  Google Scholar 

  7. Ackermann, M.: Dynamics and Energetics of Walking with Prostheses. University of Stuttgart, Stuttgart (2007)

    Google Scholar 

  8. Shourijeh, M.S., McPhee, J.: Forward dynamic optimization of human gait simulations: a global parameterization approach. J. Comput. Nonlinear Dyn. 9(3), 031018 (2014)

    Article  Google Scholar 

  9. Thelen, D.G.: Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. J. Biomech. Eng. 125(1), 70–77 (2003)

    Article  Google Scholar 

  10. Waters, R.L., Mulroy, S.: The energy expenditure of normal and pathologic gait. Gait Posture 9(3), 207–231 (1999). doi:10.1016/S0966-6362(99)00009-0

    Article  Google Scholar 

  11. Jaegers, S., Vos, L., Rispens, P., Hof, A.L.: The relationship between comfortable and most metabolically efficient walking speed in persons with unilateral above-knee amputation. Arch. Phys. Med. Rehabil. 74(5), 521–525 (1993)

    Article  Google Scholar 

  12. Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force prediction in locomotion. J. Biomech. 14(11), 793–801 (1981)

    Article  Google Scholar 

  13. Heintz, S., Gutierrez-Farewik, E.M.: Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach. Gait Posture 26(2), 279–288 (2007). doi:10.1016/j.gaitpost.2006.09.074

    Article  Google Scholar 

  14. Saidouni, T., Bessonnet, G.: Generating globally optimised sagittal gait cycles of a biped robot. Robotica 21(02), 199–210 (2003)

  15. Bessonnet, G., Seguin, P., Sardain, P.: A parametric optimization approach to walking pattern synthesis. Int. J. Robot. Res. 24(7), 523–536 (2005)

    Article  Google Scholar 

  16. García-Vallejo, D., Font-Llagunes, J.M., Schiehlen, W.: Dynamical analysis and design of active orthoses for spinal cord injured subjects by aesthetic and energetic optimization. Nonlinear Dyn. 84(2), 559–581 (2016)

    Article  MathSciNet  Google Scholar 

  17. Nagurka, M., Yen, V.: Fourier-based optimal control of nonlinear dynamic systems. J. Dyn. Syst. Meas. Control 112(1), 17–26 (1990)

    Article  MATH  Google Scholar 

  18. Schiehlen, W.: Multibody system dynamics: roots and perspectives. Multibody Syst. Dyn. 1(2), 149–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Vilimek, M.: Musculotendon forces derived by different muscle models. Acta Bioeng. Biomech. 9(2), 41–47 (2007)

    Google Scholar 

  20. Menegaldo, L.L., de Toledo Fleury, A., Weber, H.I.: Moment arms and musculotendon lengths estimation for a three-dimensional lower-limb model. J. Biomech. 37(9), 1447–1453 (2004)

    Article  Google Scholar 

  21. Hulliger, M., Zernicke, R.F.: Intrinsic muscle properties facilitate locomotor control—a computer simulation study. Motor Control 2, 206–220 (1998)

    Article  Google Scholar 

  22. Hill, A.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B. Biol. Sci. 126(843), 136–195 (1938)

    Article  Google Scholar 

  23. Nigg, B.M., Herzog, W.: Biomechanics of the Musculo-Skeletal System. Wiley, London (2007)

    Google Scholar 

  24. Winters, J.M.: Hill-based muscle models: a systems engineering perspective. In: Winters, J.M., Woo, S.L.Y. (eds.) Multiple muscle systems: biomechanics and movement organization. Springer, New York (1990)

  25. Winters, J.M.: An improved muscle-reflex actuator for use in large-scale neuromusculoskeletal models. Ann. Biomed. Eng. 23(4), 359–374 (1995)

    Article  Google Scholar 

  26. Winter, D.A.: Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological. University of Waterloo Press, Waterloo (1991)

  27. Anderson, F.C., Pandy, M.G.: Static and dynamic optimization solutions for gait are practically equivalent. J. Biomech. 34(2), 153–161 (2001)

    Article  Google Scholar 

  28. Anderson, F.C., Pandy, M.G.: A dynamic optimization solution for vertical jumping in three dimensions. Comput. Method Biomech. 2(3), 201–231 (1999)

    Article  Google Scholar 

  29. Miller, R.H., Brandon, S.C., Deluzio, K.J.: Predicting sagittal plane biomechanics that minimize the axial knee joint contact force during walking. J. Biomed. Eng. 135(1), 011007 (2013)

    Google Scholar 

  30. Cole, G.K., van den Bogert, A.J., Herzog, W., Gerritsen, K.G.: Modelling of force production in skeletal muscle undergoing stretch. J. Biomech. 29(8), 1091–1104 (1996)

    Article  Google Scholar 

  31. van Soest, A.J., Bobbert, M.F.: The contribution of muscle properties in the control of explosive movements. Biol. Cybern. 69(3), 195–204 (1993)

    Article  Google Scholar 

  32. Gordon, A., Huxley, A.F., Julian, F.: The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 184(1), 170–192 (1966)

    Article  Google Scholar 

  33. Proske, U., Morgan, D.: Tendon stiffness: methods of measurement and significance for the control of movement. A review. J. Biomech. 20(1), 75–82 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Mr. Roman Palvanov from the Department of Materials Science and Engineering at the University of Wisconsin–Madison, USA, for his help in revising this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rostami.

Appendices

Appendix A

The relationship between force and velocity for a muscle CE in a concentric contraction with \(v^{\mathrm{ce}}\le 0\) is expressed as [30]:

$$\begin{aligned} \frac{f^{\mathrm{ce}}}{f_{\mathrm{max}}^\mathrm{m} }=\left[ {\frac{B_r \left( {f_{\mathrm{isom}}^{\mathrm{ce}} +A_r } \right) }{B_r -\frac{\bar{{v}}^{\mathrm{ce}}}{f_{\mathrm{ac}} }}-A_r } \right] , \end{aligned}$$
(11)

where \(\bar{v}^{\mathrm{ce}}=v^{\mathrm{ce}}/l_{\mathrm{opt}}^{\mathrm{ce}} \), \(A_r =0.41\), \(B_r =5.2\), \(l_{\mathrm{opt}}^{\mathrm{ce}} \) is the optimal length of muscle fibers, and \(f_{\mathrm{max}}^\mathrm{m} \) is the maximum isometric force generated by a muscle group. The values of these parameters are listed in the table of muscle parameters in “Appendix” of Ref. [7] for each of the muscle groups. The parameter \(f_{\mathrm{ac}} \) is defined as \(f_{\mathrm{ac}} =\hbox {min}\left( {1,3.33\times a} \right) \) [31]. In the present study, the value of \(f_{\mathrm{ac}} \) is chosen to be 1 to reduce the computational cost. Furthermore, \(f_{\mathrm{isom}}^{\mathrm{ce}} \) is the isometric muscle force relative to the maximal muscle force \(f_{\mathrm{max}}^\mathrm{m} \). This variable represents the force–length relation for the CE, which can be modeled by a Gaussian function or a parabola where the maximum CE force occurs at the optimal fiber length [32]. The active force–length relation is represented by a Gaussian function [24]:

$$\begin{aligned} f_{\mathrm{isom}}^{\mathrm{ce}} =\text{ e }^{-{\left( {\bar{{l}}^{\mathrm{ce}}-1} \right) ^{2}}/\gamma }, \end{aligned}$$
(12)

where \(\bar{l}^{\mathrm{ce}}=l^{\mathrm{ce}}/l_{\mathrm{opt}}^{\mathrm{ce}} \) is the normalized muscle fiber length and \(\gamma \) is a shape factor. The value of \(\gamma \) was determined to be 0.45, which approximates the force–length relationship of individual sarcomeres [32].

The force–velocity relation in an eccentric contraction with \(v^{\mathrm{ce}}>0\) is expressed as [30]:

$$\begin{aligned} \frac{f^{\mathrm{ce}}}{f_{\mathrm{max}}^\mathrm{m} }=\left[ {\frac{b_1 }{b_3 -\bar{{v}}^{\mathrm{ce}}}-b_2 } \right] , \end{aligned}$$
(13)

where

$$\begin{aligned} b_1= & {} \frac{f_{\mathrm{ac}} B_r \left( {f_{\mathrm{isom}}^{\mathrm{ce}} +b_2 } \right) ^{2}}{\left( {f_{\mathrm{isom}}^{\mathrm{ce}} +A_r } \right) \hbox {slope factor}}, \end{aligned}$$
(14)
$$\begin{aligned} b_2= & {} -f_{\mathrm{isom}}^{\mathrm{ce}} f_{\mathrm{asympt}}, \end{aligned}$$
(15)
$$\begin{aligned} b_3= & {} \frac{b_1 }{f_{\mathrm{isom}}^{\mathrm{ce}} +b_2 }, \end{aligned}$$
(16)

and slope factor is the ratio of the eccentric derivative of the muscle CE force–velocity curve \(\left( {\hbox {d}f^{\mathrm{ce}}/\hbox {d}v^{\mathrm{ce}}} \right) _{\mathrm{eccentric}} \) to the concentric derivative of the muscle CE force–velocity curve \(\left( {\hbox {d}f^{\mathrm{ce}}/\hbox {d}v^{\mathrm{ce}}} \right) _{\mathrm{concentric}}\) at \(v^{\mathrm{ce}}=0\). A slope factor of 2 was adopted by Soest and Bobbert [31]; however, in the present study a slope factor of 1 is used to avoid discontinuities, as suggested by Ackermann [7]. Additionally, \(f_{\mathrm{asympt}} \) is the asymptotic maximum force value of the muscle CE force–velocity curve, considered to be 1.5 by van Soest and Bobbert [31].

The force generated by the muscle PE can be expressed as [9]:

$$\begin{aligned} \frac{f^{\mathrm{pe}}}{f_{\mathrm{max}}^\mathrm{m} }=\frac{\text{ e }^{{k^{\mathrm{PE}}\left( {\bar{{l}}^{\mathrm{ce}}-1} \right) }/{\varepsilon _0^{\mathrm{ce}} }}-1}{\text{ e }^{k^{\mathrm{PE}}}-1}, \end{aligned}$$
(17)

where \(k^{\mathrm{PE}}\) is an exponential shape factor and \(\varepsilon _0^{\mathrm{ce}} \) is the passive muscle strain due to maximum isometric force. The value of the shape factor, \(k^{\mathrm{PE}}\), is set equal to 5, while \(\varepsilon _0^{\mathrm{ce}} \) is set equal to 0.6 [9]. The passive tissue of the muscle (PE) generates force only when the length of CE is greater than the optimal length of CE.

The tendon is modeled by a nonlinear force–strain curve characterized exponentially during an initial toe region and linearly thereafter [9] as follows:

$$\begin{aligned} \frac{f^{\mathrm{se}}}{f_{\mathrm{max}}^\mathrm{m} }=\left\{ {\begin{array}{ll} \frac{\bar{{f}}_{\mathrm{toe}}^{\mathrm{se}} }{\text{ e }^{k_{\mathrm{toe}} }-1}\left( \text{ e }^{k_{\mathrm{toe}} {\varepsilon ^{\mathrm{se}}}/{\varepsilon _{\mathrm{toe}}^{\mathrm{se}} }}-1\right) ; &{}\quad \varepsilon ^{\mathrm{se}}\le \varepsilon _{\mathrm{toe}}^{\mathrm{se}} \\ k_{\mathrm{lin}} \left( \varepsilon ^{\mathrm{se}}-\varepsilon _{\mathrm{toe}}^{\mathrm{se}} \right) +\bar{{f}}_{\mathrm{toe}}^{\mathrm{se}} ;&{}\quad \varepsilon ^{\mathrm{se}}>\varepsilon _{\mathrm{toe}}^{\mathrm{se}}, \\ \end{array}} \right. \end{aligned}$$
(18)

where \(\varepsilon ^{\mathrm{se}}\) is the tendon strain; \(\varepsilon _{\mathrm{toe}}^{\mathrm{se}} \) is the tendon strain at the initial point of the linear behavior; \(k_{\mathrm{lin}} \) is a linear scale factor; \(k_{\mathrm{toe}} \) is an exponential shape factor, which is set equal to 3 [9]; and \(\bar{f}_{\mathrm{toe}}^{\mathrm{se}} \) is the tendon force normalized to maximum isometric force at the initial point, where the tendon exhibits linear behavior. Tendon strain, \(\varepsilon ^{\mathrm{se}}\), is characterized by \(\varepsilon ^{\mathrm{se}}=\left( {l^{\mathrm{se}}-l_{\mathrm{slack}} } \right) /l_{\mathrm{slack}} \), where \(l_{\mathrm{slack}} \) is the tendon slack length, at which point the tendon or SE starts to transfer force. For tendon lengths shorter than the slack length, no force is transferred to the skeletal system. For normalized tendon forces greater than \(\bar{f}_{\mathrm{toe}}^{\mathrm{se}} =0.33\), the transition from nonlinear to linear behavior occurs [33]. The values of \(\varepsilon _{\mathrm{toe}}^{\mathrm{se}} =0.609\varepsilon _0^{\mathrm{se}}\) and \(k_{\mathrm{lin}} =1.712/\varepsilon _0^{\mathrm{se}} \), characterized by a strain \(\varepsilon _0^{\mathrm{se}} \) of 4% occurring at the maximal isometric muscle force [24], are required for the continuity of slopes at the transition.

To obtain the whole force generated by the active part of the muscle, the muscle CE force should be scaled by the activation level (a). Therefore, the total muscle force can be estimated, as shown in Fig. 1b, by the sum of the PE and scaled CE forces multiplied by \(\hbox {cos}\left( {\alpha _\mathrm{p} } \right) \) as follows:

$$\begin{aligned} f^{\mathrm{m}}=\left( {f^{\mathrm{ce}}\times a+f^{\mathrm{pe}}} \right) \cos (\alpha _\mathrm{p} ), \end{aligned}$$
(19)

where \(\alpha _\mathrm{p} \) is the muscle fiber pennation angle (see Fig.  1b). The only variables that can be computed directly from the skeletal system are generalized coordinates and their derivatives, which can be used to estimate total muscle length and shortening/lengthening velocity. In order to apply Eq. (19) for inverse dynamics approaches, it should be rewritten based on muscle length, shortening/lengthening velocity according to Fig.  1b, and the proposed muscular equations (Eqs. (11)–(18)). Therefore, muscle activation can be represented by the reformulation of Eq. (19) as a function of muscle force, length, and shortening/lengthening velocity. The equations corresponding to the muscle model are employed as follows:

$$\begin{aligned}&\cos (\alpha _\mathrm{p} )=\sqrt{1-\left( {\frac{l_{\mathrm{opt}}^{\mathrm{ce}} \sin (\alpha _{\mathrm{opt}} )}{l^{\mathrm{ce}}}} \right) ^{2}} \end{aligned}$$
(20)
$$\begin{aligned}&v^{\mathrm{se}}=v^{\mathrm{m}}-\frac{v^{\mathrm{ce}}}{\cos (\alpha _\mathrm{p} )} \end{aligned}$$
(21)
$$\begin{aligned}&l^{\mathrm{ce}}=\frac{l^{\mathrm{m}}-l^{\mathrm{se}}}{\cos (\alpha _\mathrm{p} )} \end{aligned}$$
(22)
$$\begin{aligned}&f^{\mathrm{m}}=f^{\mathrm{se}}, \end{aligned}$$
(23)

where \(\alpha _{\mathrm{opt}} \) is the muscle fiber pennation angle at optimal fiber length (available in the table of muscle parameters in “Appendix” of Ref. [7]). Since the total force generated by muscle is equal to the applied force by the tendon (Eq. (23)), the tendon length \((l^{\mathrm{se}})\) can be represented as a function of total muscle force by reformulation of Eq. (18) as follows:

$$\begin{aligned}&l^{\mathrm{se}} =\left\{ {{\begin{array}{ll} \frac{l_{\mathrm{slack}} \varepsilon _{\mathrm{toe}}^{\mathrm{se}} }{k_{\mathrm{toe}} }\log \left( {\frac{f^{\mathrm{m}}\left( {\text{ e }^{k_{\mathrm{toe}} }-1} \right) }{f_{\mathrm{max}}^\mathrm{m} \bar{{f}}_{\mathrm{toe}}^{\mathrm{se}} }+1} \right) +l_{\mathrm{slack}} ;&{} f^{\mathrm{m}}\le f_{\mathrm{max}}^\mathrm{m} \bar{{f}}_{\mathrm{toe}}^{\mathrm{se}} \\ l_{\mathrm{slack}} \left( {\frac{f^{\mathrm{m}}-f_{\mathrm{max}}^\mathrm{m} \bar{{f}}_{\mathrm{toe}}^{\mathrm{se}} }{f_{\mathrm{max}}^\mathrm{m} k_{\mathrm{lin}} }+\varepsilon _{\mathrm{toe}}^{\mathrm{se}} +1} \right) ;&{} f^{\mathrm{m}}>f_{\mathrm{max}}^\mathrm{m} \bar{{f}}_{\mathrm{toe}}^{\mathrm{se}}. \\ \end{array} }} \right. \nonumber \\ \end{aligned}$$
(24)

If Eq. (18) is reformulated based on \(\varepsilon ^{\mathrm{se}}/\varepsilon _{\mathrm{toe}}^{\mathrm{se}} \) for the condition where \(\varepsilon ^{\mathrm{se}}\le \varepsilon _{\mathrm{toe}}^{\mathrm{se}} \), by a simple calculation, the new condition is extracted as \(f^{\mathrm{m}}\le f_{\mathrm{max}}^\mathrm{m} \bar{f}_{\mathrm{toe}}^{\mathrm{se}} \). The same calculation can be used when \(\varepsilon ^{\mathrm{se}}>\varepsilon _{\mathrm{toe}}^{\mathrm{se}} \), which consequently leads to \(f^{\mathrm{m}}>f_{\mathrm{max}}^\mathrm{m} \bar{f}_{\mathrm{toe}}^{\mathrm{se}} \). The CE length \((l^{\mathrm{ce}})\) is computed by using Eqs. (20) and (22) based on the total muscle and tendon lengths as follows:

$$\begin{aligned} l^{\mathrm{ce}}=\sqrt{\left( {l^{\mathrm{m}}-l^{\mathrm{se}}} \right) ^{2}+\left( {l_{\mathrm{opt}}^{\mathrm{ce}} \sin (\alpha _{\mathrm{opt}} )} \right) ^{2}}. \end{aligned}$$
(25)

The CE velocity \((v^{\mathrm{ce}})\) can be estimated by the first derivative of \(l^{\mathrm{ce}}\). Since the numerical estimations were employed to compute muscle activations, and the values of \(l^{\mathrm{ce}}\) were estimated over time by Eq. (25), a forward finite difference was applied to compute \(v^{\mathrm{ce}}\) numerically as follows:

$$\begin{aligned} v_t^{\mathrm{ce}} =\frac{l_{t+\Delta t}^{\mathrm{ce}} -l_t^{\mathrm{ce}} }{\Delta t}+O(\Delta t), \end{aligned}$$
(26)

where \(l_t^{\mathrm{ce}} \) and \(v_t^{\mathrm{ce}} \) are the CE length and velocity at time t, respectively; \(\Delta t\) is the step size for the differentiation; \(l_{t+\Delta t}^{\mathrm{ce}} \) is the CE length at time \(t+\Delta t\); and \(O\left( {\Delta t} \right) \) is the error term.

By substituting Eqs. (24) and (25) into Eqs. (11)–(17), the forces generated by muscle CE (\(f^{\mathrm{ce}})\) and PE (\(f^{\mathrm{pe}})\) are represented based on the total muscle force, length, and shortening/lengthening velocity. Therefore, the muscle activation (extracted from Eq. (19)) can be represented as a function of generalized coordinates (muscle length), their derivatives (muscle shortening/lengthening velocity), and optimization variables (muscle force) as follows:

$$\begin{aligned} a=\left\{ {{\begin{array}{ll} \frac{\left( {\bar{{v}}^{\mathrm{ce}} -B_r f_{\mathrm{ac}} } \right) \left( {\left( {1-\text{ e }^{k^{\mathrm{PE}}}} \right) f^{\mathrm{m}}l^{\mathrm{ce}} +h_1 h_2 f_{\mathrm{max}}^\mathrm{m} } \right) }{\left( {\text{ e }^{k^{\mathrm{PE}}}-1} \right) \left( {\bar{{v}}^{\mathrm{ce}} A_r +f_{\mathrm{isom}}^{\mathrm{ce}} B_r f_{\mathrm{ac}} } \right) f_{\mathrm{max}}^\mathrm{m} h_2 };&{} v^{\mathrm{ce}} \le 0 \\ \frac{\left( {\bar{{v}}^{\mathrm{ce}} \left( {f_{\mathrm{isom}}^{\mathrm{ce}} +A_r } \right) +h_3 } \right) \left( {\left( {\text{ e }^{k^{\mathrm{PE}}}-1} \right) f^{\mathrm{m}}l^{\mathrm{ce}} -h_1 h_2 f_{\mathrm{max}}^\mathrm{m} } \right) }{\left( {\text{ e }^{k^{\mathrm{PE}}}-1} \right) \left( {h_3 +\bar{{v}}^{\mathrm{ce}} \left( {f_{\mathrm{isom}}^{\mathrm{ce}} +A_r } \right) f_{\mathrm{asympt}} } \right) f_{\mathrm{isom}}^{\mathrm{ce}} f_{\mathrm{max}}^\mathrm{m} h_2 }; &{} v^{\mathrm{ce}} >0 \\ \end{array} }}, \right. \end{aligned}$$
(27)

where

$$\begin{aligned} l^{\mathrm{ce}}= & {} \left\{ {{\begin{array}{ll} \sqrt{l_{\mathrm{opt}}^{\mathrm{ce}} \sin \left( {\alpha _{\mathrm{opt}} } \right) +\left( {l^{\mathrm{m}}-l_{\mathrm{slack}} \left( {1+{Log\left( {1+\frac{\left( {\text{ e }^{k_{\mathrm{toe}} }-1} \right) f^{\mathrm{m}}}{f_{\max }^\mathrm{m} \bar{{f}}_{\mathrm{toe}}^{\mathrm{se}} }} \right) \varepsilon _{\mathrm{toe}}^{\mathrm{se}} }\big /{k_{\mathrm{toe}} }} \right) } \right) ^{2}};&{} f^{\mathrm{m}}\le f_{\mathrm{max}}^\mathrm{m} \bar{{f}}_{\mathrm{toe}}^{\mathrm{se}} \\ \sqrt{l_{\mathrm{opt}}^{\mathrm{ce}} \sin \left( {\alpha _{\mathrm{opt}} } \right) +\left( {l^{\mathrm{m}}-l_{\mathrm{slack}} \left( {1+\varepsilon _{\mathrm{toe}}^{\mathrm{se}} +\frac{f^{\mathrm{m}}-f_{\mathrm{max}}^\mathrm{m} \bar{{f}}_{\mathrm{toe}}^{\mathrm{se}} }{f_{\mathrm{max}}^\mathrm{m} k_{\mathrm{lin}} }} \right) } \right) ^{2}};&{} f^{\mathrm{m}}>f_{\mathrm{max}}^\mathrm{m} \bar{{f}}_{\mathrm{toe}}^{\mathrm{se}} \\ \end{array} }} \right. \end{aligned}$$
(28)
$$\begin{aligned}&f_{\mathrm{isom}}^{\mathrm{ce}} =\text{ e }^{-{\left( {{l^{\mathrm{ce}} }/{l_{\mathrm{opt}}^{\mathrm{ce}} }-1} \right) ^{2}}/\gamma }; \end{aligned}$$
(29)
$$\begin{aligned}&h_1 =\text{ e }^{\frac{k^{\mathrm{PE}}(-1+{l^{\mathrm{ce}} }/{l_{\mathrm{opt}}^{\mathrm{ce}} })}{\varepsilon _0^{\mathrm{ce}} }}-1;\hbox { } \end{aligned}$$
(30)
$$\begin{aligned}&h_2 =\sqrt{\left( {l^{\mathrm{ce}} } \right) ^{2}-\left( {l_{\mathrm{opt}}^{\mathrm{ce}} \sin \left( {\alpha _{\mathrm{opt}} } \right) } \right) ^{2}};\hbox { } \end{aligned}$$
(31)
$$\begin{aligned}&h_3 =\frac{f_{\mathrm{isom}}^{\mathrm{ce}} B_r f_{\mathrm{ac}} \left( {f_{\mathrm{asympt}} -1} \right) }{\hbox {slope factor}};\hbox { } \end{aligned}$$
(32)
$$\begin{aligned}&\bar{{v}}^{\mathrm{ce}} =\frac{v^{\mathrm{ce}} }{l_{\mathrm{opt}}^{\mathrm{ce}} }=\frac{l_{t+\Delta t}^{\mathrm{ce}} -l_t^{\mathrm{ce}} }{l_{\mathrm{opt}}^{\mathrm{ce}} \Delta t}+O(\Delta t).\hbox { } \end{aligned}$$
(33)

Using Eq. (27) is appropriate only when an inverse analysis is employed, due to its straightforwardness in the estimation of the muscle activation based on the total muscle force, length, and velocity. However, for a forward analysis, which presents muscle force based on muscle activation, the first-order differential equation of contraction dynamics should be applied. It can be presented by the differentiation of Eq. (18) with respect to time. By substituting Eqs. (17), (19), (20), (21), (24), (28), and muscle CE force–velocity relationship—proposed by Thelen [9]—into the first-order derivative of Eq. (18), the contraction dynamics is presented as follows:

$$\begin{aligned} \dot{f}^{\mathrm{m}}=\left\{ {{\begin{array}{ll} \frac{f_{\mathrm{max}}^\mathrm{m} \bar{{f}}_{\mathrm{toe}}^{\mathrm{se}} k_{\mathrm{toe}} }{\left( {\text{ e }^{k_{\mathrm{toe}} }-1} \right) \varepsilon _{\mathrm{toe}}^{\mathrm{se}} }\left( {v^{\mathrm{m}}-\frac{l^{\mathrm{ce}}v^{\mathrm{ce}}}{\sqrt{\left( {l^{\mathrm{ce}}} \right) ^{2}-\left( {l_{\mathrm{opt}}^{\mathrm{ce}} \ \hbox {sin} (\alpha _{\mathrm{opt}} )} \right) ^{2}}}} \right) \left( {\frac{f^{\mathrm{m}} \left( {\text{ e }^{k_{\mathrm{toe}} }-1} \right) }{f_{\mathrm{max}}^\mathrm{m} \bar{{f}}_{\mathrm{toe}}^{\mathrm{se}} }+1} \right) ;&{} f^{\mathrm{m}}\le f_{\mathrm{max}}^\mathrm{m} \bar{{f}}_{\mathrm{toe}}^{\mathrm{se}} \\ f_{\mathrm{max}}^\mathrm{m} k_{\mathrm{lin}} \left( {v^{\mathrm{m}}-\frac{l^{\mathrm{ce}}v^{\mathrm{ce}}}{\sqrt{\left( {l^{\mathrm{ce}}} \right) ^{2}-\left( {l_{\mathrm{opt}}^{\mathrm{ce}} \sin (\alpha _{\mathrm{opt}} )} \right) ^{2}}}} \right) ; &{} f^{\mathrm{m}}>f_{\mathrm{max}}^\mathrm{m} \bar{{f}}_{\mathrm{toe}}^{\mathrm{se}}, \\ \end{array} }} \right. \end{aligned}$$
(34)

where \(l^{\mathrm{ce}}\) is estimated by Eq. (28) and \(v^{\mathrm{ce}}\) is presented as follows:

$$\begin{aligned}&v^{\mathrm{ce}}=\left\{ {{\begin{array}{ll} \left( {0.25+0.75a} \right) v_{\mathrm{max}}^{\mathrm{ce}} \frac{{f^{\mathrm{ce}}}/{f_{\mathrm{max}}^\mathrm{m} }-af_{\mathrm{isom}}^{\mathrm{ce}} }{af_{\mathrm{isom}}^{\mathrm{ce}} +{f^{\mathrm{ce}}}/{\left( {f_{\mathrm{max}}^\mathrm{m} A_f } \right) }};&{} f^{\mathrm{ce}}\le af_{\mathrm{max}}^\mathrm{m} f_{\mathrm{isom}}^{\mathrm{ce}} \\ \left( {0.25+0.75a} \right) v_{\mathrm{max}}^{\mathrm{ce}} \frac{\left( {{f^{\mathrm{ce}}}/{f_{\mathrm{max}}^\mathrm{m} }-af_{\mathrm{isom}}^{\mathrm{ce}} } \right) \left( {\bar{{f}}_{len}^{\mathrm{ce}} -1} \right) }{\left( {2+2/{A_f }} \right) \left( {af_{\mathrm{isom}}^{\mathrm{ce}} \bar{{f}}_{len}^{\mathrm{ce}} -{f^{\mathrm{ce}}}/{f_{\mathrm{max}}^\mathrm{m} }} \right) };&{} f^{\mathrm{ce}}>af_{\mathrm{max}}^\mathrm{m} f_{\mathrm{isom}}^{\mathrm{ce}} \\ \end{array} }} \right. \end{aligned}$$
(35)
$$\begin{aligned}&f^{\mathrm{ce}}=\frac{f^{\mathrm{m}}l^{\mathrm{ce}}}{\sqrt{\left( {l^{\mathrm{ce}}} \right) ^{2}-\left( {l_{\mathrm{opt}}^{\mathrm{ce}} sin\left( {\alpha _{\mathrm{opt}} } \right) } \right) ^{2}}}\nonumber \\&\quad -\frac{f_{\mathrm{max}}^\mathrm{m} \left( {\text{ e }^{{k^{\mathrm{PE}}\left( {{l^{\mathrm{ce}}}/{l_{\mathrm{opt}}^{\mathrm{ce}} }-1} \right) }/{\varepsilon _0^{\mathrm{ce}} }}-1} \right) }{\text{ e }^{k^{\mathrm{PE}}}-1}. \end{aligned}$$
(36)

In Eq. (35), \(v_{\mathrm{max}}^{\mathrm{ce}} \) is the maximum contraction velocity expressed in optimal fiber lengths (\(l_{\mathrm{opt}}^{\mathrm{ce}} )\) per second, which is set to 10 [9]; \(A_f \) is the force velocity shape factor; and \(\bar{f}_{len}^{\mathrm{ce}} \) is the maximum normalized muscle force achievable while the fiber is lengthening. The values of \(A_f\) and \(\bar{f}_{len}^{\mathrm{ce}} \) are set to 0.25 and 1.4, respectively [9].

Appendix B

If the force computed by Eq. (9) is an agonist muscle force, its positive value, which is essential for the contraction behavior, is guaranteed only when:

$$\begin{aligned} \tau _j^\mathrm{s} \ge \sum _{i=1}^{n_j -1} {R_{i,j} (y)f_i^\mathrm{m} }. \end{aligned}$$
(37)

By extracting one of the antagonist muscle forces from Eq. (37), it can be rewritten as:

$$\begin{aligned} f_k^\mathrm{m} \ge \left( {\frac{1}{-R_{k,j} (y)}} \right) \left( {\begin{array}{l} -\tau _j^\mathrm{s} +\sum \limits _{i=1}^{k-1} {R_{i,j} (y)f_i^\mathrm{m} } \\ +\sum \limits _{i=k+1}^{n_j -1} {R_{i,j} (y)f_i^\mathrm{m} } \\ \end{array}} \right) , \end{aligned}$$
(38)

where \(f_k^\mathrm{m} \) is an antagonist muscle force and \(R_{k,j} \left( y \right) \) is its corresponding moment arm around joint “j”. Since muscles can only generate tensile forces, at least one pair of agonist and antagonist muscles is fundamental for any more particular movement. Therefore, it is justifiable to consider an antagonist muscle force \(f_k^\mathrm{m} \) in joint “j”, since it was assumed that \({f}_j^{\prime m} \) is an agonist muscle force.

The inequality (38) is guaranteed by the choice of the following equations for \(f_k^\mathrm{m} \):

$$\begin{aligned} g_k^m= & {} \left( a_{k,0} +\sum \limits _{n=1}^2 {a_{k,n} \cos (n\cdot \omega _k \cdot t)} \right. \nonumber \\&\left. +\sum \limits _{n=1}^2 {b_{k,n} \sin (n\cdot \omega _k \cdot t)} \right) ^{2}\nonumber \\&+\,\left( {\frac{1}{-R_{k,j} (y)}} \right) \left( {\begin{array}{l} -\tau _j^\mathrm{s} +\sum \limits _{i=1}^{k-1} {R_{i,j} (y)f_i^\mathrm{m} } \\ +\sum \limits _{i=k+1}^{n_j -1} {R_{i,j} (y)f_i^\mathrm{m} } \\ \end{array}} \right) ; \nonumber \\\end{aligned}$$
(39)
$$\begin{aligned} f_k^\mathrm{m}= & {} \left\{ {\begin{array}{ll} g_k^m ;&{}\quad g_k^m \ge 0 \\ 0;&{}\quad g_k^m <0. \\ \end{array}} \right. \end{aligned}$$
(40)

If the force computed by Eq. (9) is an antagonist muscle force, the same procedure can be applied with \(f_k^\mathrm{m} \) as an agonist muscle force.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmati, M.A., Rostami, M. & Beigzadeh, B. A low-cost optimization framework to solve muscle redundancy problem. Nonlinear Dyn 90, 2277–2291 (2017). https://doi.org/10.1007/s11071-017-3802-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3802-9

Keywords

Navigation