Skip to main content
Log in

Backstepping-based decentralized adaptive neural \(H_{\infty }\) control for a class of large-scale nonlinear systems with expanding construction

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a backstepping-based robust decentralized adaptive neural \( H_{\infty }\) connective stabilization approach is proposed for a class of large-scale interconnected nonlinear systems with expanding construction and external disturbances. First, the decentralized adaptive neural \(H_{\infty }\) controllers for the original nonlinear interconnected system are deduced and obtained by using backstepping technique, which can guarantee the connective stability of the nonlinear interconnected system. Then, the expansion of the system is considered. It is needed that the decentralized control laws and adaptive laws of the original system are kept to be unchanged, and only the control and adaptive laws for the new subsystem needs to be designed. Based on this requirement, a backstepping-based decentralized adaptive neural \(H_{\infty }\) control design method for the new subsystem is given. The decentralized control law and adaptive law of the new subsystem can stabilize the resultant expanded large-scale nonlinear system. The proposed method can guarantee the connective stability of the expanded large-scale nonlinear system. In this paper, neural networks are used to approximate the packaged nonlinear terms. As a result, the calculation of the control laws and adaptive laws is simplified. The effect of external disturbances and approximation errors is attenuated by \( H_{\infty }\) performance. All of the signals in the expanded closed-loop system are bounded. Two numerical examples are provided to show the effectiveness of the proposed control approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Siljak, D.D.: Stability of large-scale systems under structural perturbations. IEEE Trans. Syst. Man Cybern. 5(2), 657–663 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  2. Siljak, D.D.: Large-Scale Dynamic Systems: Stability and Structure. North Holland, New York (1978)

    MATH  Google Scholar 

  3. Siljak, D.D., Stipanovic, D.M.: Organically-Structured Control. In: Proceedings of American Control Conference, Arlington, VA, pp. 2736–2742 (2001)

  4. Shigui, R.: Connective stability for large scale systems described by functional differential equations. IEEE Trans. Autom. Control 33(2), 198–200 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gavel, D.T., Siljak, D.D.: Decentralized adaptive control: structural conditions for stability. IEEE Trans. Autom. Control 34(4), 413–426 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Siljak, D.D., Stipanovic, D.M.: Polytopic connective stability. In: Proceedings of IEAC Symposium on Large Scale Systems. pp. 26–32 (1998)

  7. Stipanović, D.M.: Connective stability of discontinuous interconnected systems via parameter dependent Lyapunov functions. In: Proceedings of American Control Conference, vol. 6, pp. 4189–4196. IEEE (2001)

  8. Feddema, J.T., Lewis, C., Schoenwald, D.: Decentralized control of cooperative robotic vehicles: theory and application. IEEE Trans. Robot. Autom. 18(5), 852–864 (2002)

    Article  Google Scholar 

  9. Li, X.H., Wu, L.J.: Partial robust connective stability analysis for a class of interconnected power systems. In: Proceedings of Chinese Control and Decision Conference, pp. 4450–4454. IEEE (2008)

  10. Sun, S., Peng, P.: Connective stability of singular linear time-invariant large-scale dynamical systems with sel-intraction. Adv. Differ. Equ. Conntrol Process. 3(1), 63–76 (2009)

    MATH  Google Scholar 

  11. Ikeda, M., Tan, H.L.: Connective stabilization of large-scale systems: a stable factorization approach. In: Robust Control of Linear Systems and Nonlinear Control, pp. 143–150. Birkhauser, Boston (1990)

  12. Siljak, D.D., Stipanovic, D.M.: Robust stabilization of nonlinear systems: the LMI approach. Math. Prob. Eng. 6(5), 461–493 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wang, X.D., Gao, L.Q., Zhang, S.Y.: \(H_{\infty }\) small-gain condition on quadratic stability and connective stability of uncertain composite systems. Control Theory Appl. 16(4), 34 (1999)

    MATH  MathSciNet  Google Scholar 

  14. Gong, Z., Wen, C., Mital, D.P.: Decentralized robust controller design for a class of interconnected uncertain systems: with unknown bound of uncertainty. IEEE Trans. Autom. Control 41(6), 850–854 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Li, X.H., Liu, Y., Gao, J.W.: Multi-overlapping robust decentralized connective stabilization based on dynamic output feedback for large-scale interconnected systems. Control Decis. 30(4), 727–732 (2015). (In Chinese)

    Google Scholar 

  16. Tan, X.L., Ikeda, M.: Decentralized stabilization for expanding construction of large-scale systems. IEEE Trans. Autom. Control 35(6), 644–651 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Li, X.H., Zheng, X.P., Xu, S.C., Wu, L.J.: LMI approach of decentralized connective stabilization for expanded structure of large scale systems. J. Northeast. Univ. (Nat. Sci.) 28(8), 1073–1080 (2007). (In Chinese)

    MathSciNet  Google Scholar 

  18. Li, X.H., Li, H.: Robust connective stabilization of large-scale systems with expanding construction based on dynamic output feedback. In: Proceedings of Chinese Control and Decision Conference, pp. 774–778. IEEE (2011)

  19. Li, X.H., Liu, X.P., Liu, Y.: Organically Structured Control of Large-Scale Systems with Expanding Construction Based on State Observation. Abstract and Applied Analysis. Hindawi Publishing Corporation, Cairo (2015)

    MATH  Google Scholar 

  20. Li, X.H., Liu, Y., Liu, X.P.: Decentralized Finite-Time Connective Control for a Class of Large-Scale Systems with Different Structural Forms. Mathematical Problems in Engineering (2015)

  21. Guo, Y., Hill, D.J., Wang, Y.: Nonlinear decentralized control of large-scale power systems. Automatica 36(9), 1275–1289 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Tong, S.C., Li, H.X., Chen, G.: Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems. IEEE Trans. Syst. Man Cybern. B Cybern. 34(1), 770–775 (2004)

    Article  Google Scholar 

  23. Liu, S.J., Zhang, J.F., Jiang, Z.P.: Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems. Automatica 43(2), 238–251 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Li, T.S., Li, R., Li, J.: Decentralized adaptive neural control of nonlinear interconnected large-scale systems with unknown time delays and input saturation. Neurocomputing 74(14-15), 2277–2283 (2011)

    Article  Google Scholar 

  25. Yoo, S.J., Park, J.B.: Neural-network-based decentralized adaptive control for a class of large-scale nonlinear systems with unknown time-varying delays. IEEE Trans. Syst. Man Cybern. B Cybern. 39(5), 1316–1323 (2009)

    Article  Google Scholar 

  26. Tong, S.C., Li, Y.M., Zhang, H.G.: Adaptive neural network decentralized backstepping output-feedback control for nonlinear large-scale systems with time delays. IEEE Trans. Neural Netw. 22(7), 1073–1086 (2011)

    Article  Google Scholar 

  27. Li, T.S., Li, R., Li, J.: Decentralized adaptive neural control of nonlinear systems with unknown time delays. Nonlinear Dyn. 67(3), 2017–2026 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wang, H.Q., Liu, X., Liu, K.: Robust adaptive neural tracking control for a class of stochastic nonlinear interconnected systems. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 510–523 (2015)

    Article  MathSciNet  Google Scholar 

  29. Guo, Y., Jiang, Z.P., Hill, D.J.: Decentralized robust disturbance attenuation for a class of large-scale nonlinear systems. Syst. Control Lett. 37(2), 71–85 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Jiang, Z.P., Repperger, D.W., Hill, D.J.: Decentralized nonlinear output-feedback stabilization with disturbance attenuation. IEEE Trans. Autom. Control 46(10), 1623–1629 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tseng, C.S., Chen, B.S.: \(H_{\infty }\) decentralized fuzzy model reference tracking control design for nonlinear interconnected systems. IEEE Trans. Fuzzy Syst. 9(6), 795–809 (2001)

    Article  Google Scholar 

  32. Thanh, N.T., Phat, V.N.: Decentralized \(H_{\infty }\) control for large-scale interconnected nonlinear time-delay systems via LMI approach. J. Process Control 22(7), 1325–1339 (2012)

    Article  Google Scholar 

  33. Mukaidani, H., Sakaguchi, S., Umeda, T., et al.: Neural-based decentralized robust control of large-scale uncertain nonlinear systems with guaranteed \(H_{\infty }\) performance. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 6348–6354 (2006)

  34. Wang, T., Tong, S.C.: Decentralized fuzzy model reference \( H_{\infty }\) tracking control for nonlinear large-scale systems. In: Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China. June 21–23, 2006, pp. 75–79

  35. Li, G., Lie, T.T., Soh, C.B., et al.: Design of state-feedback decentralized nonlinear \(H_{\infty }\) controllers in power systems. Int. J. Electr. Power Energy Syst. 24(8), 601–610 (2002)

    Article  Google Scholar 

  36. Huang, Y.S., Zhou, D.Q., Chen, X.: Decentralized direct adaptive output feedback fuzzy \(H_{\infty }\) tracking design of large-scale nonaffine nonlinear systems. Nonlinear Dyn. 58(1–2), 153–167 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Huang, Y.S., Xiao, D.S., Chen, X.X., et al.: \(H_{\infty }\) tracking-based decentralized hybrid adaptive output feedback fuzzy control for a class of large-scale nonlinear systems. Fuzzy Sets Syst. 171(1), 72–92 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  38. Huang, Y.S., Huang, Z.X., Zhou, D.Q., Chen, X.X., Zhu, Q.X., Yang, H.: Decentralised indirect adaptive output feedback fuzzy \( H_{\infty }\) tracking design for a class of large-scale nonlinear systems. Int. J. Syst. Sci. 43(1), 180–191 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  39. Yousef, H., El-Madbouly, E., Eteim, D., et al.: Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems with MIMO subsystems. In: Proceedings of the 2006 International Conference on Computer Engineering and Systems, pp. 27–32. IEEE (2006)

  40. Senthilkumar, T., Balasubramaniam, P.: Delay-dependent robust stabilization and \(H_{\infty }\) control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays. J. Optim. Theory Appl. 151(1), 100–120 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  41. Chen, W.S., Li, J.M.: Decentralized output-feedback neural control for systems with unknown interconnections. IEEE Trans. Syst. Man Cybern. B Cybern. 38(1), 258–266 (2008)

    Article  Google Scholar 

  42. Wang, H.Q., Chen, B., Lin, C.: Direct adaptive neural control for strict-feedback stochastic nonlinear systems. Nonlinear Dyn. 67(4), 2703–2718 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. Chen, M., Liu, X.P., Wang, H.Q.: Adaptive robust fault-tolerant control for nonlinear systems with prescribed performance. Nonlinear Dyn. 81, 1727–1739 (2015)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61403177) and NSERC of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Liu.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liu, X. Backstepping-based decentralized adaptive neural \(H_{\infty }\) control for a class of large-scale nonlinear systems with expanding construction. Nonlinear Dyn 90, 1373–1392 (2017). https://doi.org/10.1007/s11071-017-3733-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3733-5

Keywords

Navigation