Skip to main content

Advertisement

Log in

Characterisation of instantaneous dynamic parameters in vibration analysis of tuned liquid column dampers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Liquid dampers are attractive for engineering applications to suppress undesired vibration resulting from wind, wave and earthquake excitation. This is particularly relevant to tuned liquid column dampers due to their high volumetric efficiency, consistent behaviour and nonlinear but quantifiable damping mechanism. The paper investigates instantaneous dynamic parameters of such dampers. A simplified analytical model, numerical simulations and experimental work are undertaken to reveal time-variant behaviour of natural frequency and damping. The major focus is on experimental analysis and wavelet identification. The latter is based on the concept of wavelet ridges and the Crazy Climbers optimisation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. El-Sayad, M.A., Hanna, S.N., Ibrahim, R.A.: Parametric excitation of nonlinear elastic systems involving hydrodynamic sloshing impact. Nonlinear Dyn. 18(1), 25–50 (1999)

    Article  MATH  Google Scholar 

  2. Ikeda, T.: Nonlinear parametric vibrations of an elastic structure with a rectangular liquid tank. Nonlinear Dyn. 33(1), 43–70 (2003)

    Article  MATH  Google Scholar 

  3. Saoka, Y., Sakai, F., Takaeda, S., Tamaki, T.: On the suppression of vibrations by tuned liquid column dampers, In: Annual Meeting of JSCE. JSCE, Tokyo (1988)

  4. Sakai, F., Takaeda, S., and Tamaki, T.: Tuned liquid column damper-new type device for suppression of building vibration, In: International Conference on High-Rise Building, pp. 926–31. (1989)

  5. Sakai, F., Takaeda, S., Tamaki, T.: Tuned liquid column dampers (TLCD) for cable-stayed bridges. In: Proceeding, pp. 197–205. Bridges, Specialty Conference Innovation in Cable-Stayed (1991)

  6. Xu, Y.L., Kwok, K.C.S., Samali, B.: The effect of tuned mass dampers and liquid dampers on cross-wind response of tall/slender structures. J. Wind Eng. Ind. Aerodyn. 40(1), 33–54 (1992)

    Article  Google Scholar 

  7. Balendra, T., Wang, C.M., Cheong, H.F.: Effectiveness of tuned liquid column dampers for vibration control of towers. Eng. Struct. 17(9), 668–675 (1995)

    Article  Google Scholar 

  8. Shum, K.M., Xu, Y.L.: Multiple tuned liquid column dampers for reducing coupled lateral and torsional vibration of structures. Eng. Struct. 26(6), 745–758 (2004)

    Article  Google Scholar 

  9. Min, K.-W., Park, E.-C.: Dynamic characteristics of tuned liquid column dampers using shaking table test. Trans. Korean Soc. Noise Vib. Eng. 19(6), 620–627 (2009)

    Article  MathSciNet  Google Scholar 

  10. Wu, J.C., Shih, M.H., Lin, Y.Y., Shen, Y.C.: Design guidelines for tuned liquid column damper for structures responding to wind. Eng. Struct. 27(13), 1893–1905 (2005)

    Article  Google Scholar 

  11. Haroun, A.W.M.A., Pires, J.A.: Active orifice control in hybrid liquid column dampers. In: First World Conference on Structural Control, 1, pp. 69–78. (1994)

  12. Sun, L.M., Fujino, Y.: A semi-analytical model for tuned liquid damper (TLD) with wave breaking. J. Fluids Struct. 8(5), 471–488 (1994)

    Article  Google Scholar 

  13. Won, A.Y.J., Pires, J.A., Haroun, M.A.: Stochastic seismic performance evaluation of tuned liquid column dampers. Earthq. Eng. Struct. Dyn. 25(11), 1259–1274 (1996)

    Article  Google Scholar 

  14. Yalla, S.K., Kareem, A.: Optimum absorber parameters for tuned liquid column dampers. J. Struct. Eng. 126(8), 906–915 (2000)

    Article  Google Scholar 

  15. Sadek, F., Mohraz, B., Lew, H.S.: Single- and multiple-tuned liquid column dampers for seismic applications. Earthq. Eng. Struct. Dyn. 27(5), 439–463 (1998)

    Article  Google Scholar 

  16. Reiterer, M., Ziegler, F.: Bi-axial seismic activation of civil engineering structures equipped with tuned liquid column dampers. J. Seismol. Earthq. Eng. 7(1), 45–60 (2005)

    Google Scholar 

  17. Ghosh, A., Basu, B.: Alternative approach to optimal tuning parameter of liquid column damper for seismic applications. J. Struct. Eng. 133(12), 1848 (2007)

    Article  Google Scholar 

  18. Debbarma, R., Chakraborty, S., Ghosh, Kumar S.: Optimum design of tuned liquid column dampers under stochastic earthquake load considering uncertain bounded system parameters. Int. J. Mech. Sci. 52(10), 1385–1393 (2010)

    Article  Google Scholar 

  19. Chakraborty, S., Debbarma, R., Marano, G.C.: Performance of tuned liquid column dampers considering maximum liquid motion in seismic vibration control of structures. J. Sound Vib. 331(7), 1519–1531 (2012)

    Article  Google Scholar 

  20. Gao, H., Kwok, K.C.S., Samali, B.: Optimization of tuned liquid column dampers. Eng. Struct. 19(6), 476–486 (1997)

    Article  Google Scholar 

  21. Hitchcock, P.A., Kwok, K.C.S., Watkins, R.D., Samali, B.: Characteristics of liquid column vibration absorbers (LCVA)–I. Eng. Struct. 19(2), 126–134 (1997)

    Article  Google Scholar 

  22. Wu, J.C., Chang, C.H., Lin, Y.Y.: Optimal designs for non-uniform tuned liquid column dampers in horizontal motion. J. Sound Vib. 326(1–2), 104–122 (2009)

    Article  Google Scholar 

  23. Konar, T., Ghosh, A.: Passive control of seismically excited structures by the liquid column vibration absorber. Struct. Eng. Mech. 36(5), 561–573 (2010)

    Article  Google Scholar 

  24. Kareem, A.: Liquid tuned mass dampers: past, present and future. In: Proceedings of the 7th U.S. National Conference on Wind Engineering, Los Angeles, vol. 7. (1993)

  25. Rozas, L., Boroschek, R.L., Tamburrino, A., Rojas, M.: A bidirectional tuned liquid column damper for reducing the seismic response of buildings. Struct. Control Heal. Monit. 23(4), 621–640 (2016)

    Article  Google Scholar 

  26. Chakraborty, S., Debbarma, R.: Stochastic earthquake response control of structures by liquid column vibration absorber with uncertain bounded system parameters. Struct. Saf. 33(2), 136–144 (2011)

    Article  Google Scholar 

  27. Konar, T., Ghosh, A.: Bimodal vibration control of seismically excited structures by the liquid column vibration absorber. J. Vib. Control 19(3), 385–394 (2013)

    Article  Google Scholar 

  28. Battista, R.C., Carvalho, E.M.L., de Souza, Almeida R.: Hybrid fluid-dynamic control devices to attenuate slender structures oscillations. Eng. Struct. 30(12), 3513–3522 (2008)

    Article  Google Scholar 

  29. Al-saif, K.A., Aldakkan, K.A., Foda, M.A.: International journal of mechanical sciences modified liquid column damper for vibration control of structures. Int. J. Mech. Sci. 53(7), 505–512 (2011)

    Article  Google Scholar 

  30. Sarkar, A., Gudmestad, O.T.: Pendulum type liquid column damper (PLCD) for controlling vibrations of a structure–Theoretical and experimental study. Eng. Struct. 49, 221–233 (2013)

    Article  Google Scholar 

  31. Ghosh, A., Basu, B.: Seismic vibration control of short period structures using the liquid column damper. Eng. Struct. 26(13), 1905–1913 (2004)

    Article  Google Scholar 

  32. Ghosh, A., Basu, B.: Effect of soil interaction on the performance of liquid column dampers for seismic applications. Earthq. Eng. Struct. Dyn. 34(11), 1375–1389 (2005)

    Article  Google Scholar 

  33. Ghosh, A., Basu, B.: Seismic vibration control of nonlinear structures using the liquid column damper. J. Struct. Eng. 134(1), 146–153 (2008)

    Article  Google Scholar 

  34. Hochrainer, M.J.: Tuned liquid column damper for structural control. Acta Mech. 175(1–4), 57–76 (2005)

    Article  MATH  Google Scholar 

  35. Shum, K.M., Xu, Y.L., Guo, W.H.: Wind-induced vibration control of long span cable-stayed bridges using multiple pressurized tuned liquid column dampers. J. Wind Eng. Ind. Aerodyn. 96(2), 166–192 (2008)

    Article  Google Scholar 

  36. Balendra, T., Wang, C.M., Yan, N.: Control of wind-excited towers by active tuned liquid column damper. Eng. Struct. 23(9), 1054–1067 (2001)

    Article  Google Scholar 

  37. De Souza, S.L.T., Caldas, I.L., Viana, R.L., Balthazar, J.M., Brasil, R.M.L.R.F.: Dynamics of vibrating systems with tuned liquid column dampers and limited power supply. J. Sound Vib. 289(4–5), 987–998 (2006)

    Article  Google Scholar 

  38. Yalla, S.K., Kareem, A.: Semiactive tuned liquid column dampers: experimental study. J. Struct. Eng. 129(7), 960–971 (2003)

    Article  Google Scholar 

  39. Kim, H., Adeli, H.: Wind-induced motion control of 76-story benchmark building using the hybrid damper-TLCD system. J. Struct. Eng. 131, 1794–1802 (2005)

    Article  Google Scholar 

  40. Sakamoto, D., Oshima, N., Fukuda, T.: Tuned sloshing damper using electro-rheological fluid. Smart Mater. Struct. 10(5), 963–969 (2001)

    Article  Google Scholar 

  41. Ni, Y.Q., Ying, Z.G., Wang, J.Y., Ko, J.M., Spencer, B.F.: Stochastic optimal control of wind-excited tall buildings using semi-active MR-TLCDs. Probabilist. Eng. Mech. 19(3), 269–277 (2004)

    Article  Google Scholar 

  42. Wang, J.Y., Ni, Y.Q., Ko, J.M., Spencer, B.F.: Magneto-rheological tuned liquid column dampers (MR-TLCDs) for vibration mitigation of tall buildings: modelling and analysis of open-loop control. Comput. Struct. 83(25–26), 2023–2034 (2005)

    Article  Google Scholar 

  43. Colwell, S., Basu, B.: Tuned liquid column dampers in offshore wind turbines for structural control. Eng. Struct. 31(2), 358–368 (2009)

    Article  Google Scholar 

  44. Ghosh, A.: A study on liquid dampers for aseismic design of structures. PhD Thesis, Jadavpur University, India, (2003)

  45. Denman, H.H.: Time-translation invariance for certain dissipative classical systems. Am. J. Phys. 36(6), 516–519 (1968)

    Article  Google Scholar 

  46. Cvetićanin, L.: Oscillator with strong quadratic damping force. Publ. l’Institut Math. 85(99), 119–130 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Worden, K., Tomlinson, G.R.: Nonlinearity in Structural Dynamics. IOP Publishing Ltd, Bristol (2001)

    Book  MATH  Google Scholar 

  48. Smith, C.B., Wereley, N.M.: Nonlinear Damping Identification from Transient Data. AIAA J. 37(12), 1625–1632 (1999)

    Article  Google Scholar 

  49. Den Hartog, J.P.: Mechanical Vibrations, vol. 4. Addison-Wesley Reading, Boston (1985)

    MATH  Google Scholar 

  50. Yang, Y., Peng, Z.K., Dong, X.J., Zhang, W.M., Meng, G.: Nonlinear time-varying vibration system identification using parametric time-frequency transform with spline kernel. Nonlinear Dyn. 85(3), 1679–1694 (2016)

    Article  MathSciNet  Google Scholar 

  51. Staszewski, W. J.: Wavelets for Mechanical and Structural Damage Identification. In: Polish Academy of Sciences, IMP PAN, (2000)

  52. Staszewski, W.J.: Identification of damping in mdof systems using time-scale decomposition. J. Sound Vib. 203(2), 283–305 (1997)

    Article  Google Scholar 

  53. Staszewski, W.J.: Identification of non-linear systems using multi-scale ridges and Skeletons of the wavelet transform. J. Sound Vib. 214(4), 639–658 (1998)

    Article  MathSciNet  Google Scholar 

  54. Staszewski, W.J., Wallace, D.M.: Wavelet-based frequency response function for time-variant systems-an exploratory study. Mech. Syst. Signal Process. 47(1–2), 35–49 (2014)

    Article  Google Scholar 

  55. Carmona, R., Hwang, W.L., Torrésani, B.: Practical Time-Frequency Analysis: continuous wavelet and Gabor transforms, with an implementation in S, vol. 9. Academic Press, Incorporated, New York (1998)

    MATH  Google Scholar 

  56. Carmona, R.A., Hwang, W.L., Torrésani, B.: Multiridge detection and time-frequency reconstruction. IEEE Trans. Signal Process. 47(2), 480–492 (1999)

    Article  Google Scholar 

  57. Feldman, M.: Non-linear system vibration analysis using Hilbert transform-I. Free vibration analysis method Freevib. Mech. Syst. Signal Process. 8(2), 119–127 (1994)

    Article  Google Scholar 

  58. Feldman, M.: Hilbert Transform Applications in Mechanical Vibration, vol. 25. John Wiley and Sons, London (2011)

    Book  Google Scholar 

  59. Inman, D.J.: Engineering Vibration, vol. 3. Prentice Hall Upper Saddle River, Upper Saddle River (2001)

    Google Scholar 

  60. Ruzzene, M., Fasana, A., Garibaldi, L., Piombo, B.: Natural frequencies and dampings identification using wavelet transform: application to real data. Mech. Syst. Signal Process. 11(2), 207–218 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The work presented in this paper was supported by funding from the WELCOME research Project No. 2010-3/2, sponsored by the Foundation for Polish Science (Innovative Economy, National Cohesion Programme, EU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Staszewski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dziedziech, K., Staszewski, W.J., Ghosh, A. et al. Characterisation of instantaneous dynamic parameters in vibration analysis of tuned liquid column dampers. Nonlinear Dyn 90, 717–731 (2017). https://doi.org/10.1007/s11071-017-3690-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3690-z

Keywords

Navigation