Skip to main content
Log in

Nonlinear time-varying vibration system identification using parametric time–frequency transform with spline kernel

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In real-life applications, mechanical vibration systems are not linear time invariant. Time-varying pattern arise, for instance, during deployment, aging, deformation, load variation, etc. In the absence of a complete physics-based description of a system, system identification (SI) is able to obtain the missed information of nonstationary pattern for the unknown system. The SI will face difficulty when the time-varying system involves the nonlinearity, which makes the system solution have both the nonlinear and nonstationary time–frequency patterns. This paper aimed to identify the system with linear and nonlinear time-varying characteristics using parametric time–frequency transform with spline kernel, which is known for offering great energy concentration in time–frequency domain and allows the accurate extraction of model feature. The efficacy of the proposed method is demonstrated on SDOF systems comprised of three types of nonlinear time-varying stiffness, including time-varying periodic modulation of stiffness, time-varying piecewise modulation of nonlinear stiffness and time-varying periodic modulation of nonlinear stiffness. Comparisons with the conventional time–frequency methods and the Hilbert transform-based SI validated that the proposed method is more robust in characterizing the nonlinear time-varying stiffness of the system with the presence of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

SI:

System identification

TFA:

Time–frequency analysis

TFR:

Time–frequency representation

LTI:

Linear time invariant

NTV:

Nonlinear time varying

PTFT:

Parametric time–frequency transform

IF:

Instantaneous frequency

STFT:

Short-time Fourier transform

WT:

Wavelet transform

WVD:

Wigner–Ville distribution

SDOF:

Single degree of freedom

MDOF:

Multiple degree of freedom

PTFT_S:

Parametric time–frequency transform with spline kernel

IA:

Instantaneous amplitude

HT:

Hilbert transform

References

  1. Epureanu, B.I., Yin, S.-H., Dowell, E.H.: Enhanced nonlinear dynamics for accurate identification of stiffness loss in a thermo-shielding panel. Nonlinear Dyn. 39, 197–211 (2005)

    Article  MATH  Google Scholar 

  2. Szolc, T., Tauzowski, P., Knabel, J., Stocki, R.: Nonlinear and parametric coupled vibrations of the rotor-shaft system as fault identification symptom using stochastic methods. Nonlinear Dyn. 57, 533–557 (2009)

    Article  MATH  Google Scholar 

  3. Li, J., Hua, C., Tang, Y., Guan, X.: A time-varying forgetting factor stochastic gradient combined with Kalman filter algorithm for parameter identification of dynamic systems. Nonlinear Dyn. 78, 1943–1952 (2014)

    Article  Google Scholar 

  4. Lu, X., Zou, W., Huang, M.: An adaptive modeling method for time-varying distributed parameter processes with curing process applications. Nonlinear Dyn. 82, 865–876 (2015)

  5. Ghosh, D.: Projective-dual synchronization in delay dynamical systems with time-varying coupling delay. Nonlinear Dyn. 66, 717–730 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bennett, D., Hollerbach, J., Xu, Y., Hunter, I.: Time-varying stiffness of human elbow joint during cyclic voluntary movement. Exp. Brain Res. 88, 433–442 (1992)

    Article  Google Scholar 

  7. Feldman, M.: Nonlinear system vibration analysis using Hilbert transform I: free vibration analysis method “freevib”. Mech. Syst. Signal Process. 8, 119–127 (1994)

    Article  Google Scholar 

  8. Feldman, M.: Nonlinear system vibration analysis using Hilbert transform II: forced vibration analysis method “forcevib”. Mech. Syst. Signal Process. 8, 309–318 (1994)

    Article  Google Scholar 

  9. Ta, M.N., Lardies, J.: Identification of weak nonlinearities on damping and stiffness by the continuous wavelet transform. J. Sound Vib. 293, 16–37 (2006)

    Article  Google Scholar 

  10. Basu, B., Nagarajaiah, S., Chakraborty, A.: Online identification of linear time-varying stiffness of structural systems by wavelet analysis. Struct. Health Monit. 7, 21–36 (2008)

    Article  Google Scholar 

  11. Xu, B., He, J., Masri, S.F.: Data-based identification of nonlinear restoring force under spatially incomplete excitations with power series polynomial model. Nonlinear Dyn. 67, 2063–2080 (2012)

    Article  MathSciNet  Google Scholar 

  12. Thothadri, M., Casas, R., Moon, F., D’Andrea, R., Johnson Jr., C.: Nonlinear system identification of multi-degree-of-freedom systems. Nonlinear Dyn. 32, 307–322 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Thothadri, M., Moon, F.: Nonlinear system identification of systems with periodic limit-cycle response. Nonlinear Dyn. 39, 63–77 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Narayanan, M., Narayanan, S., Padmanabhan, C.: Parametric identification of nonlinear systems using multiple trials. Nonlinear Dyn. 48, 341–360 (2007)

    Article  MATH  Google Scholar 

  15. Rüdinger, F., Krenk, S.: Identification of nonlinear oscillator with parametric white noise excitation. Nonlinear Dyn. 36, 379–403 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang, Y., Nagarajaiah, S.: Time-frequency blind source separation using independent component analysis for output-only modal identification of highly damped structures. J. Struct. Eng. 139, 1780–1793 (2012)

    Article  Google Scholar 

  17. Staszewski, W.: Identification of damping in MDOF systems using time-scale decomposition. J. Sound Vib. 203, 283–305 (1997)

    Article  Google Scholar 

  18. Staszewski, W.J.: Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform. J. Sound Vib. 214, 639–658 (1998)

    Article  Google Scholar 

  19. Tjahjowidodo, T., Al-Bender, F., Van Brussel, H.: Experimental dynamic identification of backlash using skeleton methods. Mech. Syst. Signal Process. 21, 959–972 (2007)

    Article  Google Scholar 

  20. Le, T.-P., Argoul, P.: Instantaneous indicators of structural behavior based on the continuous cauchy wavelet analysis. Mech. Syst. Signal Process. 17, 243–250 (2003)

    Article  Google Scholar 

  21. Yan, B.F., Miyamoto, A., Brühwiler, E.: Wavelet transform-based modal parameter identification considering uncertainty. J. Sound Vib. 291, 285–301 (2006)

    Article  Google Scholar 

  22. Shan, X., Burl, J.B.: Continuous wavelet based linear time-varying system identification. Signal Process. 91, 1476–1488 (2011)

    Article  MATH  Google Scholar 

  23. Kijewski, T., Kareem, A.: Wavelet transforms for system identification in civil engineering. Comput. Aided Civil Infrastruct. Eng. 18, 339–355 (2003)

    Article  Google Scholar 

  24. Montejo, L.A., Vidot-Vega, A.L.: Synchrosqueezed wavelet transform for frequency and damping identification from noisy signals. Smart Struct. Syst. 9, 441–459 (2012)

    Article  Google Scholar 

  25. Michael, F., Simon, B.: Identification of non-linear system parameters via the instantaneous frequency: application of the Hilbert transform and Wigner–Ville techniques, pp. 637–637. SPIE International Society for Optical, Proceedings-SPIE the International Society for Optical Engineering (1995)

  26. Roshan-Ghias, A., Shamsollahi, M.B., Mobed, M., Behzad, M.: Estimation of modal parameters using bilinear joint time-frequency distributions. Mech. Syst. Signal Process. 21, 2125–2136 (2007)

    Article  Google Scholar 

  27. Pai, P.F., Palazotto, A.N.: HHT-based nonlinear signal processing method for parametric and non-parametric identification of dynamical systems. Int. J. Mech. Sci. 50, 1619–1635 (2008)

    Article  Google Scholar 

  28. Bao, C., Hao, H., Li, Z.-X., Zhu, X.: Time-varying system identification using a newly improved HHT algorithm. Comput. Struct. 87, 1611–1623 (2009)

    Article  Google Scholar 

  29. Yang, Y., Dong, X.J., Peng, Z.K., Zhang, W.M., Meng, G.: Vibration signal analysis using parameterized time-frequency method for feature extraction of varying-speed rotary machinery. J. Sound Vib. 332, 350–366 (2015)

  30. Yang, Y., Peng, Z., Dong, X., Zhang, W., Meng, G.: General parameterized time-frequency transform. IEEE Trans. Signal Process. 62, 2751–2764 (2014)

    Article  MathSciNet  Google Scholar 

  31. Kadambe, S., Boudreaux-Bartels, G.F.: A comparison of the existence ofcross terms’ in the Wigner distribution and the squared magnitude of the wavelet transform and the short-time Fourier transform. Signal Process. IEEE Trans. 40, 2498–2517 (1992)

    Article  MATH  Google Scholar 

  32. Chen, G., Chen, J., Dong, G.: Chirplet Wigner–Ville distribution for time-frequency representation and its application. Mech. Syst. Signal Process. 41, 1–13 (2013)

    Article  MathSciNet  Google Scholar 

  33. Peng, Z.K., Meng, G., Chu, F., Lang, Z., Zhang, W., Yang, Y.: Polynomial chirplet transform with application to instantaneous frequency estimation. IEEE Trans. Instrum. Meas. 60, 3222–3229 (2011)

  34. Yang, Y., Zhang, W.M., Peng, Z.K., Meng, G.: Multicomponent signal analysis based on polynomial chirplet transform. IEEE Trans. Ind. Electron. 60, 3948–3956 (2013)

  35. Yang, Y., Peng, Z.K., Zhang, W.M., Meng, G.: Spline-kernelled chirplet transform for the analysis of signals with time-varying frequency and its application. IEEE Trans. Ind. Electron. 59, 1612–1621 (2012)

  36. Yang, Y., Peng, Z.K., Zhang, W.M., Meng, G.: Frequency-varying group delay estimation using frequency domain polynomial chirplet transform. Mech. Syst. Signal Process. 46, 146–162 (2014)

Download references

Acknowledgments

This research was supported by the NSFC for Distinguished Young Scholars (11125209) and the NSFC (11402144, 51121063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. K. Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Peng, Z.K., Dong, X.J. et al. Nonlinear time-varying vibration system identification using parametric time–frequency transform with spline kernel. Nonlinear Dyn 85, 1679–1694 (2016). https://doi.org/10.1007/s11071-016-2786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2786-1

Keywords

Navigation