Skip to main content
Log in

Linearizability and critical period bifurcations of a generalized Riccati system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the isochronicity and linearizability problem for a cubic polynomial differential system which can be considered as a generalization of the Riccati system. Conditions for isochronicity and linearizability are found. The global structure of systems of the family with an isochronous center is determined. Furthermore, we find the order of weak center and study the problem of local bifurcation of critical periods in a neighborhood of the center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. One can download linearizability quantities \(i_1\), \(j_1\), \(\ldots \), \(i_8\), \(j_8\) and the Singular code to perform the decomposition of the variety from http://teacher.shnu.edu.cn/_upload/article/files/79/14/f36e87e342b8b0d6977e6debdeb3/3b818cf4-a6f7-4f07-8669-f4b78e48f733.txt.

References

  1. Amel’kin, V.V., Lukashevich, N.A., Sadovskii, A.P.: Nonlinear Oscillations in Second Order Systems (Russian). Belarusian State University, Minsk (1982)

    Google Scholar 

  2. Andronov, A.A., Leontovitch, E.A., Gordon, I.I., Maier, A.G.: Qualitative Theory of Second-Order Dynamic Systems. Israel Program for Scientific Translations. Wiley, New York (1973)

  3. Arnold, E.A.: Modular algorithms for computing Grobner bases. J. Symb. Comput. 35, 403–419 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bautin, N.N.: On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. Mat. Sb. 30, 181–196 (1952)

    MATH  Google Scholar 

  5. Bautin, N.N.: On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. Am. Math. Soc. Transl. 100, 181–196 (1954)

    MathSciNet  Google Scholar 

  6. Buchbinder, I.L., Odintsov, S.D., Shapiro, I.L.: Effective Action in Quantum Gravity. IOP Publishing Ltd, Bristol (1992). p. 282

    Google Scholar 

  7. Chavarriga, J., García, I.A., Giné, J.: Isochronicity into a family of time-reversible cubic vector fields. Appl. Math. Comput. 121, 129–145 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Chavarriga, J., Giné, J., García, I.A.: Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomial. Bull. Sci. Math. 123, 77–96 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, T., Huang, W., Ren, D.: Weak centers and local critical periods for a \({\mathbf{Z}}_2\)-equivariant cubic system. Nonlinear Dyn. 78, 2319–2329 (2014)

    Article  Google Scholar 

  10. Chen, X., Huang, W., Romanovski, V.G., Zhang, W.: Linearizability conditions of a time-reversible quartic-like system. J. Math. Anal. Appl. 383, 179–189 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, X., Huang, W., Romanovski, V.G., Zhang, W.: Linearizability and local bifurcation of critical periods in a cubic Kolmogorov system. J. Comput. Appl. Math. 245, 86–96 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chicone, C., Jacobs, M.: Bifurcation of critical periods for planar vector fields. Trans. Am. Math. Soc. 312, 433–486 (1989)

    Article  MATH  Google Scholar 

  13. Christopher, C., Devlin, C.: Isochronous centers in planar polynomial systems. SIAM J. Math. Anal. 28, 162–177 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Christopher, C., Rousseau, C.: Nondegenerate linearizable centres of complex planar quadratic and symmetric cubic systems in \({\mathbb{C}}^2\). Publ. Mat. 45, 95–123 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cima, A., Gasull, A., Mañosa, V., Mañosas, F.: Algebraic properties of the Liapunov and period constants. Rocky Mt. J. Math. 27, 471–501 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cima, A., Gasull, A., Mañosas, F.: Period function for a class of Hamiltonian systems. J. Differ. Equ. 168, 180–199 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cima, A., Gasull, A., Silvab, P.: On the number of critical periods for planar polynomial systems. Nonlinear Anal. 69, 1889–1903 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Decker, W., Greuel, G.-M., Pfister, G., Shönemann, H.: Singular 3-1-6—a computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2012)

  19. Decker, W., Laplagne, S., Pfister, G., Schonemann, H.A.: Singular 3-1 library for computing the prime decomposition and radical of ideals, primdec.lib (2010)

  20. Dumortier, F., Llibre, J., Artés, J.C.: Qualititive Theory of Planar Differential Systems. Springer, Berlin (2006)

    MATH  Google Scholar 

  21. Ferčec, B., Levandovskyy, V., Romanovski, V.G., Shafer, D.S.: Bifurcation of critical periods of polynomial systems. J. Differ. Equ. 259, 3825–3853 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fernandes, W., Romanovski, V.G., Sultanova, M., Tang, Y.: Isochronicity and linearizability of a planar cubic system. J. Math. Anal. Appl. 450, 795–813 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gasull, A., Zhao, Y.: Bifurcation of critical periods from the rigid quadratic isochronous vector field. Bull. Sci. Math. 132, 291–312 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Giné, J., Kadyrsizova, Z., Liu, Y.-R., Romanovski, V.G.: Linearizability conditions for Lotka–Volterra planar complex quartic systems having homogeneous nonlinearities. Comput. Math. Appl. 61, 1190–1201 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Haider, K.M.A.: On isochronicity of Hamiltonian second order differential systems with polynomials of degree 3. Vestnik BSU Ser. 1(1), 63–67 (1983)

    Google Scholar 

  26. Han, M.: Bifurcation Theory of Limit Cycles. Science Press, Beijing (2013)

    Google Scholar 

  27. Han, M.: Liapunov constants and Hopf cyclicity of Liénard systems. Ann. Differ. Equ. 15, 113–126 (1999)

    MATH  Google Scholar 

  28. Huygens, C.: Horologium Oscillatorium, p 117. F. Muget, Paris (1673)

  29. Jarque, X., Villadelprat, J.: Nonexistence of isochronous centers in planar polynomial Hamiltonian systems of degree four. J. Differ. Equ. 180, 334–373 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, J., Lin, Y.: Normal form of planar autonomous system and periodic critical points of closed orbits. Acta Math. Sin. 34, 490–501 (1991)

    MATH  Google Scholar 

  31. Li, N., Han, M., Romanovski, V.G.: Cyclicity of some Liénard Systems. Commun. Pure Appl. Anal. 14, 2127–2150 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Llibre, J., Romanovski, V.G.: Isochronicity and linearizability of planar polynomial Hamiltonian systems. J. Differ. Equ. 259, 1649–1662 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Llibre, J., Valls, C.: Algebraic invariant curves and first integrals for Riccati polynomial differential systems. Proc. Am. Math. Soc. 142, 3533–3543 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Llibre, J., Valls, C.: Liouvillian first integrals for generalized Riccati polynomial differential systems. Adv. Nonlinear Stud. 15, 951–961 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Loud, W.S.: Behaviour of the period of solutions of certain plane autonomous systems near centers. Contrib. Differ. Equ. 3, 21–36 (1964)

    MATH  Google Scholar 

  36. Mardešić, P., Rousseau, C., Toni, B.: Linearization of isochronous centers. J. Differ. Equ. 121, 67–108 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  38. Nehari, Z.: Conformal Mapping. Dover Publications Inc., New York (1975)

    MATH  Google Scholar 

  39. Noro, N., Yokoyama, K.: Verification of Gröbner basis candidates. In: Hong, H., Yap, C. (eds.) Mathematical Software ICMS 2014, Lecture Notes in Computer Science, vol. 8592, pp. 419–424. Springer, Berlin (2014)

    Google Scholar 

  40. Nowakowski, M., Rosu, H.C.: Newton’s laws of motion in the form of a Riccati equation. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 65(4 Pt 2B), 047602 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pleshkan, I.I.: A new method of investigating the isochronicity of a system of two differential equations. Dokl. Akad. Nauk SSSR 182, 768–771 (1968)

    MathSciNet  Google Scholar 

  42. Pleshkan, I.I.: A new method of investigating the isochronicity of a system of two differential equations. Sov. Math. Dokl. 9, 1205–1209 (1968)

    MATH  Google Scholar 

  43. Romanovski, V.G., Chen, X., Hu, Z.: Linearizability of linear systems perturbed by fifth degree homogeneous polynomials. J. Phys. A 40, 5905–5919 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Romanovski, V.G., Prešern, M.: An approach to solving systems of polynomials via modular arithmetics with applications. J. Comput. Appl. Math. 236, 196–208 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems: A Computational Algebra Approach. Birkhauser, Boston (2009)

    MATH  Google Scholar 

  46. Rosu, H.C., Aceves de la Cruz, F.: One-parameter Darboux-transformed quantum actions in thermodynamics. Phys. Scr. 65, 377–382 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rousseau, C., Toni, B.: Local bifurcations of critical periods in vector fields with homogeneous nonlinearities of the third degree. Can. J. Math. 36, 473–484 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rousseau, C., Toni, B.: Local bifurcation of critical periods in the reduced Kukles system. Can. Math. Bull. 49, 338–358 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, P.S., Guy, M.J.T., Davenport, J.H.: P-adic reconstruction of rational numbers. SIGSAM Bull. 16, 2–3 (1982)

    Article  MATH  Google Scholar 

  50. Wolfram Research, Inc., Mathematica, Version 11.1, Champaign, IL (2017)

  51. Yu, P., Han, M.: Critical periods of planar revertible vector field with third-degree polynomial functions. Int. J. Bifurc. Chaos 19, 419–433 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zelekin, M.I.: Homogeneous Spaces and Riccati Equation in Variational Calculus. Factorial, Moskow (1998) (in Russian)

  53. Zhou, Z., Romanovski, V.G., Yu, J.: Centers and limit cycles of a generalized cubic Riccati system. Preprint, arxiv:1706.00099

Download references

Acknowledgements

The first author acknowledges the financial support from the Slovenian Research Agency (research core funding No. P1-0306). The second author is partially supported by a CAPES grant. The third author has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 655212, and is partially supported by the National Natural Science Foundation of China (No. 11431008) and the RFDP of Higher Education of China grant (No. 20130073110074). The first, second and third authors are also supported by Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme, FP7-PEOPLE-2012-IRSES-316338. The forth author is partially supported by the National Natural Science Foundation of China (No. 11501370). The first author thanks Professor Maoan Han for fruitful discussions on the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilei Tang.

Appendix

Appendix

Here are listed the first two pairs of the linearizability quantities of system (1.3).

$$\begin{aligned} i_1= & {} 10 a_{02}^2 + 9 a_{03} + 4 b_{02}^2 - a_{02} b_{11} + b_{11}^2 - 3 b_{12} \\&+ 10 b_{02} b_{20} + 10 b_{20}^2 - 9 b_{30},\\ j_1= & {} 2 a_{02} b_{02} - b_{02} b_{11} - b_{11} b_{20} + b_{21},\\ i_2= & {} 168 a_{02}^2 a_{03} - 272 a_{02}^2 b_{02}^2 - 72 a_{03} b_{02}^2 - 32 b_{02}^4 \\&-\, 112 a_{02}^3 b_{11} - 42 a_{02} a_{03} b_{11} + 40 a_{02} b_{02}^2 b_{11} \\&-\, 21 a_{03} b_{11}^2- 18 b_{02}^2 b_{11}^2 - 21 a_{02} b_{11}^3 - b_{11}^4 \\&+\, 12 a_{02}^2 b_{12} - 48 b_{02}^2 b_{12} + 72 a_{02} b_{11} b_{12} - 3 b_{11}^2 b_{12} \\&+\, 18 b_{12}^2 - 48 a_{02}^2 b_{02} b_{20} - 132 a_{03} b_{02} b_{20} \\&-\, 80 b_{02}^3 b_{20} - 286 a_{02} b_{02} b_{11} b_{20} + 47 b_{02} b_{11}^2 b_{20} \\&-\, 144 b_{02} b_{12} b_{20} - 160 a_{02}^2 b_{20}^2 - 102 a_{03} b_{20}^2\\&+\, 12 b_{02}^2 b_{20}^2 - 306 a_{02} b_{11} b_{20}^2 + 61 b_{11}^2 b_{20}^2 \\&-\, 114 b_{12} b_{20}^2 + 260 b_{02} b_{20}^3 + 200 b_{20}^4\\&-\, 30 a_{02} b_{02} b_{21} - 39 b_{02} b_{11} b_{21}+ 84 a_{02} b_{20} b_{21} \\&-\, 96 b_{11} b_{20} b_{21} + 27 b_{21}^2 + 132 a_{02}^2 b_{30}+ 81 a_{03} b_{30} \\&-\, 66 b_{02}^2 b_{30} + 207 a_{02} b_{11} b_{30} - 6 b_{11}^2 b_{30}- 6 a_{02}^2 b_{11}^2 \\&+\, 81 b_{12} b_{30} - 498 b_{02} b_{20} b_{30} - 498 b_{20}^2 b_{30} + 135 b_{30}^2,\\ j_2= & {} 224 a_{02}^3 b_{02} + 240 a_{02} a_{03} b_{02} - 16 a_{02} b_{02}^3 \\&-\, 184 a_{02}^2 b_{02} b_{11} + 6 a_{03} b_{02} b_{11} + 40 b_{02}^3 b_{11} \\&+\, 124 a_{02} b_{02} b_{11}^2 - 11 b_{02} b_{11}^3 - 156 a_{02} b_{02} b_{12} \\&+ \,54 b_{02} b_{11} b_{12} - 120 a_{02}^3 b_{20} - 108 a_{02} a_{03} b_{20} \\&+ \,104 a_{02} b_{02}^2 b_{20}+ 40 a_{02}^2 b_{11} b_{20} + 27 a_{03} b_{11} b_{20}\\&+ \,38 b_{02}^2 b_{11} b_{20} + 77 a_{02} b_{11}^2 b_{20} - 8 b_{11}^3 b_{20}\\&+ \,24 a_{02} b_{12} b_{20} + 39 b_{11} b_{12} b_{20} + 140 a_{02} b_{02} b_{20}^2 \\&- \,64 b_{02} b_{11} b_{20}^2 - 120 a_{02} b_{20}^3 - 50 b_{11} b_{20}^3 \\&- \,48 a_{02}^2 b_{21} - 45 a_{03} b_{21} - 42 b_{02}^2 b_{21} - 87 a_{02} b_{11} b_{21} \\&- \,27 b_{12} b_{21} - 6 b_{02} b_{20} b_{21} + 6 b_{11}^2 b_{21}+ 30 b_{20}^2 b_{21}\\&-\, 270 a_{02} b_{02} b_{30} + 105 b_{02} b_{11} b_{30} + 108 a_{02} b_{20} b_{30}\\&+ \,84 b_{11} b_{20} b_{30} - 36 b_{21} b_{30}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanovski, V.G., Fernandes, W., Tang, Y. et al. Linearizability and critical period bifurcations of a generalized Riccati system. Nonlinear Dyn 90, 257–269 (2017). https://doi.org/10.1007/s11071-017-3659-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3659-y

Keywords

Navigation