Skip to main content
Log in

Fundamental aspects of curvature indices for characterizing dynamical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

It is important to characterize the properties of dynamical systems by a quantity that signifies their structural changes, in particular those associated with occurrence of chaos or other transitional behaviors. There are some well-known indices, such as Lyapunov exponent, fractal dimension, and Kolmogorov entropy, while in this article we use a new quantifier, named the curvature index, to study the dynamical systems. The curvature index (proposed by Chen and Chang in Chaos 22(2):371–383 2012) is defined as the limit of the average curvature of a trajectory during evolution for a dynamical system, which lumps all the bending effects of the trajectory to a number, and estimates its average size (such as an attractor) in virtue of an inscribed space ball. One may define N-1 curvature indices for an N-dimensional dynamical system. Once the system undergoes a structural change, there are corresponding changes in the first and/or higher curvatures. The study is aimed to examine fundamental aspects of the curvature indices with further applications to some outstanding examples of dynamical systems in the literature, in parallel to the analysis by the Lyapunov exponents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Moon, F.C.: Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineers. Wiley, New York (1992)

    Book  Google Scholar 

  2. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  3. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  Google Scholar 

  4. May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261(5560), 459–467 (1976)

    Article  MATH  Google Scholar 

  5. Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19(1), 25–52 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Feigenbaum, M.J.: The universal metric properties of nonlinear transformations. J. Stat. Phys. 21(6), 669–706 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45(9), 712–716 (1980)

    Article  Google Scholar 

  8. Takens, F.: Detecting Strange Attractors in Turbulence. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  9. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pecora, L.M.: Synchronizing chaotic systems. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 2038 (1993)

  11. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pecora, L.M., Carroll, T.L.: Driving systems with chaotic signals. Phys. Rev. A 44(4), 2374–2383 (1991)

    Article  Google Scholar 

  13. Pecora, L.M., Carroll, T.L.: Synchronization of chaotic systems. Chaos Interdiscip. J. Nonlinear Sci. 25(9), 821–824 (2015)

    Article  MATH  Google Scholar 

  14. Brown, R., Bryant, P., Abarbanel, H.D.: Computing the Lyapunov spectrum of a dynamical system from an observed time series. Phys. Rev. A 43(6), 2787–2806 (1991)

    Article  MathSciNet  Google Scholar 

  15. Mandelbrot, B.: How long is the coast of britain? Statistical self-similarity and fractional dimension. Science 156(3775), 636–638 (1967)

    Article  Google Scholar 

  16. Benettin, G., Galgani, L., Strelcyn, J.M.: Kolmogorov entropy and numerical experiments. Phys. Rev. A 14(6), 2338–2345 (1976)

    Article  Google Scholar 

  17. Oseledec, V.I.: A multiplicative ergodic theorem; the Lyapunov characteristic numbers of dynamical system. Trans. Mosc. Math. Society 19, 197–231 (1968)

  18. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; A method for computing all of them. Part 2: numerical application. Meccanica 15(1), 9–20 (1980)

    Article  MATH  Google Scholar 

  19. Bridges, T.J., Reich, S.: Computing Lyapunov exponents on a Stiefel manifold. Phys. D Nonlinear Phenom. 156(3–4), 219–238 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Greene, J.M., Kim, J.S.: The calculation of Lyapunov spectra. Phys. D Nonlinear Phenom. 24(1–3), 213–225 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 16(3), 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 50(2), R647–R650 (1994)

    MathSciNet  Google Scholar 

  23. Chen, Y.S., Chang, C.C.: The curvature index and synchronization of dynamical systems. Chaos 22(2), 371–383 (2012)

    MathSciNet  Google Scholar 

  24. Gluck, H.: Higher curvatures of curves in Euclidean space. Am. Math. Mon. 73(73), 257–266 (1966)

  25. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)

    Article  MATH  Google Scholar 

  26. Saltzman, B.: Finite amplitude free convection as an initial value problem-I. J. Atmos. Sci. 19(19), 329–341 (1962)

    Article  Google Scholar 

  27. Li, Y., Liu, X., Chen, G., Liao, X.: A new hyperchaotic Lorenz-type system: generation, analysis, and implementation. Int. J. Circuit Theory Appl. 39(8), 865–879 (2011)

    Google Scholar 

  28. Voglis, N.: Detection of ordered and chaotic motion using the dynamical spectra. Celest. Mech. Dyn. Astron. 73(1), 211–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Skokos, C., Bountis, T.C., Antonopoulos, C.: Geometrical properties of local dynamics in Hamiltonian systems: the Generalized Alignment Index (GALI) method. Phys. D Nonlinear Phenom. 231(1), 30–54 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, Y., Wang, H.: Synchronization of fractional-order chaotic systems with Gaussian fluctuation by sliding mode control. Abstr. Appl. Anal. 2013(108), 219–228 (2013)

    MathSciNet  Google Scholar 

  31. Xu, Y., Wang, H., Li, Y., Pei, B.: Image encryption based on synchronization of fractional chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 19(10), 3735–3744 (2014)

    Article  MathSciNet  Google Scholar 

  32. Li, Y., Yong, X., Kurths, J., Yue, X.: Lévy-noise-induced transport in a rough triple-well potential. Phys. Rev. E 94(4–1), 042222 (2016)

    Article  Google Scholar 

  33. Yong, X., Li, Y., Hao, Z., Li, X., Kurths, J.: The switch in a genetic toggle system with Lévy noise. Sci Rep 6, 31505 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The work is completed in part while the senior author (C.-C. Chang) was visiting Guangxi University. We thank the National Natural Science Foundation of China (Grant No: 11672077) and also the National Natural Science Foundation of Guangxi (2015GXNSFDA139034) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Cheng Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, SF., Chang, CC. Fundamental aspects of curvature indices for characterizing dynamical systems. Nonlinear Dyn 90, 65–81 (2017). https://doi.org/10.1007/s11071-017-3646-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3646-3

Keywords

Navigation