Skip to main content
Log in

Improving the synchronization speed of self-propelled particles with restricted vision via randomly changing the line of sight

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In recent years, the well-developed Vicsek model (VM) has attracted more and more attention. In this paper, a novel modified VM is proposed in order to describe the collective motion of the self-propelled particles, wherein the particles have the restricted visual field and the changing line of sight (LoS). The attention field (or field of view) of each particle is a sector, and the LoS direction randomly changes around the direction of motion, in which the changing ruler follows the normal distribution. Compared with the original Vicsek model, the proposed model is more close to the reality. Simulations are performed, and the results show that the proposed modified model can accelerate the synchronization speed and enhance the robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3–4), 71–140 (2012)

    Article  Google Scholar 

  2. Ákos, Z., Beck, R., Nagy, M., Vicsek, T., Kubinyi, E.: Leadership and path characteristics during walks are linked to dominance order and individual traits in dogs. PLoS Comput. Biol. 10(1), e1003446 (2014)

    Article  Google Scholar 

  3. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Duan, H., Zhang, X.: Phase transition of vortexlike self-propelled particles induced by a hostile particle. Phys. Rev. E 92(1), 012701 (2015)

    Article  MathSciNet  Google Scholar 

  5. Zhang, X., Duan, H., Luo, Q.: Levenberg–Marquardt based artificial physics method for mobile robot oscillation alleviation. Sci. China Phys. Mech. Astron. 57(9), 1771–1777 (2014)

    Article  Google Scholar 

  6. Liu, J., Liu, Z., Chen, Z.: Coordinative control of multi-agent systems using distributed nonlinear output regulation. Nonlinear Dyn. 67(3), 1871–1881 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yang, Z., Zhang, Q., Chen, Z.: Flocking of multi-agents with nonlinear inner-coupling functions. Nonlinear Dyn. 60(3), 255–264 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Silverberg, J.L., Bierbaum, M., Sethna, J.P., Cohen, I.: Collective motion of humans in mosh and circle pits at heavy metal concerts. Phys. Rev. Lett. 110(22), 228701 (2013)

    Article  Google Scholar 

  9. Nagy, M., Vásárhelyi, G., Pettita, B., Roberts-Mariania, I., Vicsek, T., Biroa, D.: Context-dependent hierarchies in pigeons. Proc. Natl. Acad. Sci. USA 110(32), 13049–13054 (2013)

    Article  Google Scholar 

  10. Nagy, M., Ákos, Z., Biro, D., Vicsek, T.: Hierarchical group dynamics in pigeon flocks. Nature 464(7290), 890–893 (2010)

    Article  Google Scholar 

  11. Swain, D.T., Couzin, I.D., Leonard, N.E.: Real-time feedback-controlled robotic fish for behavioral experiments with fish schools. Proc. IEEE 100(1), 150–163 (2012)

    Article  Google Scholar 

  12. Buhl, J., Sumpter, D.J.T., Couzin, I.D., Hale, J.J., Despland, E., Miller, E.R., Simpson, S.J.: From disorder to order in marching locusts. Science 312(5778), 1402–1406 (2006)

    Article  Google Scholar 

  13. Ciszak, M., Comparini, D., Mazzolai, B., Baluska, F., Arecchi, F.T., Vicsek, T., Mancuso, S.: Swarming behavior in plant roots. PLoS ONE 7(1), e29759 (2012)

    Article  Google Scholar 

  14. Sun, W., Yu, X., Lü, J., Chen, S.: Synchronization of coupled harmonic oscillators with random noises. Nonlinear Dyn. 79(1), 473–484 (2015)

    Article  MATH  Google Scholar 

  15. Lopes, A.M., Machado, J.A.T.: Dynamical behaviour of multi-particle large-scale systems. Nonlinear Dyn. 69(3), 913–925 (2012)

    Article  MathSciNet  Google Scholar 

  16. Deutsch, A., Theraulaz, G., Vicsek, T.: Collective motion in biological systems. Interface Focus 2(6), 689–692 (2012)

    Article  Google Scholar 

  17. Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model. Comput. Graph. 21(4), 25–34 (1987)

    Article  Google Scholar 

  18. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995)

    Article  MathSciNet  Google Scholar 

  19. Czirók, A., Vicsek, M., Vicsek, T.: Collective motion of organisms in three dimensions. Physica A 264(1–2), 299–304 (1999)

    Article  MATH  Google Scholar 

  20. Moussaïd, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian behavior and crowd disasters. Proc. Natl. Acad. Sci. USA 108(17), 6884–6888 (2011)

    Article  Google Scholar 

  21. Couzin, I.D., Krause, J., Franks, N.R.: Effective leadership and decision-making in animal groups on the move. Nature 433(7025), 513–516 (2005)

    Article  Google Scholar 

  22. Yang, H., Zhou, T., Huang, L.: Promoting collective motion of self-propelled agents by distance-based influence. Phys. Rev. E 89(3), 032813 (2014)

    Article  Google Scholar 

  23. Gao, J., Chen, Z., Cai, Y., Xu, X.: Enhancing the convergence efficiency of a self-propelled agent system via a weighted model. Phys. Rev. E 81(4), 041918 (2010)

    Article  Google Scholar 

  24. George, M., Ghose, D.: Reducing convergence times of self-propelled swarms via modified nearest neighbor rules. Physica A 391(16), 4121–4127 (2012)

    Article  Google Scholar 

  25. Aldana, M., Dossetti, V., Huepe, C., Kenkre, V.M., Larralde, H.: Phase transitions in systems of self-propelled agents and related network models. Phys. Rev. Lett. 98(9), 095702 (2007)

    Article  Google Scholar 

  26. Peng, L., Zhao, Y., Tian, B., Zhang, J., Wang, B., Zhang, H., Zhou, T.: Consensus of self-driven agents with avoidance of collisions. Phys. Rev. E 79(2), 026113 (2009)

    Article  Google Scholar 

  27. Zhang, J., Zhao, Y., Tian, B., Peng, L., Zhang, H., Wang, B., Zhou, T.: Accelerating consensus of self-driven swarm via adaptive speed. Physica A 388(7), 1237 (2009)

    Article  Google Scholar 

  28. Tian, B., Yang, H., Li, W., Wang, W., Wang, B., Zhou, T.: Optimal view angle in collective dynamics of self-propelled agents. Phys. Rev. E 79(5), 052102 (2009)

    Article  Google Scholar 

  29. Li, Y., Wang, S., Han, Z., Tian, B., Xi, Z., Wang, B.: Optimal view angle in the three-dimensional self-propelled particle model. Europhys. Lett. 93(6), 68003 (2011)

    Article  Google Scholar 

  30. McComb, D., Kajiura, S.: Visual fields of four batoid fishes: a comparative study. J. Exp. Biol. 211(4), 482–490 (2008)

    Article  Google Scholar 

  31. Nguyen, P.T., Lee, S.-H., Ngo, V.T.: Effect of vision angle on the phase transition in flocking behavior of animal groups. Phys. Rev. E 92(3), 032716 (2015)

    Article  Google Scholar 

  32. Barberis, L., Peruani, F.: Large-scale patterns in a minimal cognitive flocking model: incidental leaders, nematic patterns, and aggregates. Phys. Rev. Lett. 117(24), 248001 (2016)

    Article  Google Scholar 

  33. Durve, M., Sayeed, A.: First-order phase transition in a model of self-propelled particles with variable angular range of interaction. Phys. Rev. E 93(5), 052115 (2016)

    Article  Google Scholar 

  34. Calvão, A.M., Brigatti, E.: The role of neighbours selection on cohesion and order of swarms. PLoS ONE 9(5), e94221 (2014)

    Article  Google Scholar 

  35. Chate, H., Gineli, F., Raynaud, F.: Collective motion of self-propelled particles interacting without cohesion. Phys. Rev. E 77(4), 046113 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This research is partially supported by the China Postdoctoral Science Foundation under Grant #71002011201601, the 2017 BJUT United Grand Scientific Research Program on Intelligent Manufacturing under Grant #040000546317552 and the General Program of Science and Technology Development Project of Beijing Municipal Education Commission under Grant #KM201510005005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Jia, S. & Li, X. Improving the synchronization speed of self-propelled particles with restricted vision via randomly changing the line of sight. Nonlinear Dyn 90, 43–51 (2017). https://doi.org/10.1007/s11071-017-3644-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3644-5

Keywords

Navigation