Skip to main content
Log in

Nonlinear low-velocity impact on damped and matrix-cracked hybrid laminated beams containing carbon nanotube reinforced composite layers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the low-velocity impact response of a shear deformable laminated beam which contains both carbon nanotube reinforced composite (CNTRC) layers and carbon fiber reinforced composite (CFRC) layers. The effect of matrix cracks is considered, and a refined self-consistent model is selected to describe the degraded stiffness caused by the damage. The beam including damping effects rests on a two-parameter elastic foundation in thermal environments. Based on a higher-order shear deformation theory and von Kármán nonlinear strain–displacement relationships, the motion equations of the beam and impactor are established and solved by means of a two-step perturbation approach. The material properties of both CFRC layers and CNTRC layers are assumed to be temperature-dependent. To assess engineering application of this hybrid structure, two conditions for outer CNTRC layers and outer CFRC layers are compared. Besides, the effects of the crack density, volume fraction of carbon nanotube, temperature variation, the foundation stiffness and damping on the nonlinear low-velocity impact behavior of hybrid laminated beams are also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lau, K.T., Hui, D.: The revolutionary creation of new advanced materials: carbon nanotube composites. Compos. Part B 33, 263–277 (2002)

    Article  Google Scholar 

  2. Sun, C.H., Li, F., Cheng, H.M., Lu, G.Q.: Axial Young’s modulus prediction of single walled carbon nanotubes arrays with diameters from nanometer to meter scales. Appl. Phys. Lett. 87, 193101–193104 (2005)

    Article  Google Scholar 

  3. Griebel, M., Hamaekers, J.: Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites. Comput. Method Appl. Mech. Eng. 193, 1773–1788 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Meguid, S.A., Sun, Y.: On the tensile and shear strength of nano-reinforced composite interfaces. Mater. Des. 25, 289–296 (2004)

    Article  Google Scholar 

  5. Shen, H.-S.: Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments. Compos. Struct. 91, 9–19 (2009)

    Article  Google Scholar 

  6. Shen, H.-S.: Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells. Compos. Part B 43, 1030–1038 (2012)

    Article  Google Scholar 

  7. Wang, Z.-X., Shen, H.-S.: Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments. Nonlinear Dyn. 70, 2319–2330 (2012)

    MathSciNet  Google Scholar 

  8. Yas, M.H., Samadi, N.: Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. Int. J. Press. Ves. Pip. 98, 119–128 (2012)

    Article  Google Scholar 

  9. Zhang, L.W., Lei, Z.X., Liew, K.M., Yu, J.L.: Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels. Comput. Methods Appl. Mech. Eng. 273, 1–18 (2014)

    Article  MATH  Google Scholar 

  10. Alibeigloo, A.: Static analysis of functionally graded carbon nanotube-reinforced composite plate embedded in piezoelectric layers by using theory of elasticity. Compos. Struct. 95, 612–622 (2013)

    Article  Google Scholar 

  11. Ansari, R., Pourashraf, T., Gholami, R., Shahabodini, A.: Analytical solution for nonlinear postbuckling of functionally graded carbon nanotube-reinforced composite shells with piezoelectric layers. Compos. Part B 90, 267–277 (2016)

    Article  Google Scholar 

  12. Ke, L.L., Yang, J., Kitipornchai, S.: Dynamic stability of functionally graded carbon nanotube-reinforced composite beams. Mech. Adv. Mater. Struct 20, 28–37 (2013)

    Article  Google Scholar 

  13. Rafiee, M., He, X.Q., Liew, K.M.: Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection. Int. J. Non Linear. Mech. 59, 37–51 (2014)

    Article  Google Scholar 

  14. Rafiee, M., Yang, J., Kitipornchai, S.: Thermal bifurcation buckling of piezoelectric carbon nanotube reinforced composite beams. Comput. Math. Appl. 66, 1147–1160 (2013)

    Article  MATH  Google Scholar 

  15. Mareishi, S., Rafiee, M., He, X.Q., Liew, K.M.: Nonlinear free vibration, postbuckling and nonlinear static deflection of piezoelectric fiber-reinforced laminated composite beams. Compos. Part B 59, 123–132 (2014)

    Article  Google Scholar 

  16. He, X.Q., Rafiee, M., Mareishi, S.: Nonlinear dynamics of piezoelectric nanocomposite energy harvesters under parametric resonance. Nonlinear Dyn. 79, 1863–1880 (2015)

    Article  MATH  Google Scholar 

  17. Fan, Y., Wang, H.: Thermal postbuckling and vibration of postbuckled matrix cracked hybrid laminated plates containing carbon nanotube reinforced composite layers on elastic foundation. Compos. Struct. 157, 386–397 (2016)

    Article  Google Scholar 

  18. Fan, Y., Wang, H.: Nonlinear dynamics of matrix-cracked hybrid laminated plates containing carbon nanotube-reinforced composite layers resting on elastic foundations. Nonlinear Dyn. 84, 1181–1199 (2016)

    Article  MATH  Google Scholar 

  19. Wang, Z.-X., Xu, J., Qiao, P.: Nonlinear low-velocity impact analysis of temperature-dependent nanotube-reinforced composite plates. Compos. Struct. 108, 423–434 (2014)

    Article  Google Scholar 

  20. Jam, J.E., Kiani, Y.: Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal environment. Compos. Struct. 132, 35–43 (2015)

    Article  Google Scholar 

  21. Malekzadeh, P., Dehbozorgi, M.: Low velocity impact analysis of functionally graded carbon nanotubes reinforced composite skew plates. Compos. Struct. 140, 728–748 (2016)

    Article  Google Scholar 

  22. Song, Z.G., Zhang, L.W., Liew, K.M.: Dynamic responses of CNT reinforced composite plates subjected to impact loading. Compos. Part B 99, 154–161 (2016)

    Article  Google Scholar 

  23. Sisi, M.K., Shakeri, M., Sadighi, M.: Dynamic response of composite laminated beams under asynchronous/repeated low-velocity impacts of multiple masses. Compos. Struct. 132, 960–973 (2015)

    Article  Google Scholar 

  24. Topac, O.T., Gozluklu, B., Gurses, E.: Experimental and computational study of the damage process in CFRP composite beams under low-velocity impact. Compos. Part A 92, 167–182 (2017)

    Article  Google Scholar 

  25. Lei, Z.X., Zhang, L.W., Liew, K.M.: Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method. Compos. Struct. 127, 245–259 (2015)

    Article  Google Scholar 

  26. Lei, Z.X., Zhang, L.W., Liew, K.M.: Analysis of laminated CNT reinforced functionally graded plates sing the element-free kp-Ritz method. Compos. Part B 84, 211–221 (2016)

    Article  Google Scholar 

  27. Malekzadeh, P., Heydarpour, Y.: Mixed Navier-layerwise differential quadrature three-dimensional static and free vibration analysis of functionally graded carbon nanotube reinforced composite laminated plates. Meccanica 50, 143–167 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shen, H.-S.: A Two-Step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells. Wiley, Singapore (2013)

    Book  MATH  Google Scholar 

  29. Abrate, S.: Impact Engineering of Composite Structures. Springer Press, New York (2011)

    Book  MATH  Google Scholar 

  30. Kistler, L.S., Waas, A.M.: Experiment and analysis on the response of curved laminated composite panels subjected to low velocity impact. Int. J. Impact Eng. 21, 711–736 (1998)

    Article  Google Scholar 

  31. Setoodeh, A.R., Malekzadeh, P., Nikbin, K.: Low velocity impact analysis of laminated composite plates using a 3D elasticity based layerwise FEM. Mater. Des. 30, 3795–3801 (2009)

    Article  Google Scholar 

  32. Sun, C.T., Chen, J.K.: On the impact of initially stressed composite laminates. J. Comput. Math. 19, 490–504 (1985)

    Google Scholar 

  33. Gu, L., Qin, Z., Chu, F.: Analytical analysis of the thermal effect on vibrations of a damped Timoshenko beam. Mech. Syst. Sig. Process 60–61, 619–643 (2015)

  34. Giunta, G., Biscani, F., Belouettar, S., Ferreira, A.J.M., Carrera, E.: Free vibration analysis of composite beams via refined theories. Compos. Part B 44, 540–552 (2013)

    Article  Google Scholar 

  35. Li, J., Huo, Q., Li, X., Kong, X., Wu, W.: Vibration analyses of laminated composite beams using refined higher-order shear deformation theory. Int. J. Mech. Mater. Des. 10, 43–52 (2014)

    Article  Google Scholar 

  36. Shen, H.-S.: Hygrothermal effects on the postbuckling of shear deformable laminated plates. Int. J. Mech. Sci. 43, 1259–1281 (2001)

    Article  MATH  Google Scholar 

  37. Laws, N., Dvorak, G.J., Hejazi, M.: Stiffness changes in unidirectional composites caused by crack systems. Mech. Mater. 2, 123–137 (1983)

    Article  Google Scholar 

  38. Dvorak, G.J., Laws, N., Hejazi, M.: Analysis of progressive matrix cracking in composite laminates I. Thermoelastic properties of a ply with cracks. J. Compos. Mater. 19, 216–234 (1985)

    Article  Google Scholar 

  39. Srivastava, H.M., Kumar, D., Singh, J.: An efficient analytical technique for fractional model of vibration equation. Appl. Math. Model. 45, 192–204 (2017)

    Article  MathSciNet  Google Scholar 

  40. Kumar, D., Singh, J., Kumar, S., Sushila, Singh, B.P.: Numerical computation of nonlinear shock wave equation of fractional order. Ain Shams Eng. J. 6, 605–611 (2015)

  41. Kumar, D., Singh, J., Baleanu, D.: Numerical computation of a fractional model of Differential–Difference Equation. J. Comput. Nonlinear Dyn. 11, 061004 (2016)

    Article  Google Scholar 

  42. Kumar, D., Singh, J., Baleanu, D.: A hybrid computational approach for Klein–Gordon equations on Cantor sets. Nonlinear Dyn. 87, 511–517 (2017)

    Article  MathSciNet  Google Scholar 

  43. Bowles, D.E., Tompkins, S.S.: Prediction of coefficients of thermal expansion for unidirectional composite. J. Compos. Mater. 23, 370–388 (1989)

    Article  Google Scholar 

  44. Shen, H.-S., Zhang, C.-L.: Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Mater. Des. 31, 3403–3411 (2010)

    Article  Google Scholar 

  45. Gunda, J.B., Gupta, R.K., Janardhan, G.R., Rao, G.V.: Large amplitude vibration analysis of composite beams: simple closed-form solutions. Compos. Struct. 93, 870–879 (2011)

    Article  Google Scholar 

  46. Adam, C., Heuer, R., Jeschko, A.: Flexural vibrations of elastic composite beams with interlayer slip. Acta Mech. 125, 17–30 (1997)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Professor H.-S. Shen of Shanghai Jiao Tong University for his considerable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Wang.

Appendix

Appendix

In Eqs. (41) and (42)

$$\begin{aligned} g_{30}= & {} -\gamma _{17} +m^{2}\left( {\gamma _{18} +\gamma _{19} } \right) \frac{\gamma _{21} m^{2}-\gamma _{23} }{\gamma _{22} m^{2}+\gamma _{23} } \nonumber \\&-\left( {\gamma _{29} +\gamma _{28} \frac{\gamma _{21} m^{2}-\gamma _{23} }{\gamma _{22} m^{2}+\gamma _{23} }} \right) \frac{\gamma _{12} m^{4}}{\gamma _{22} m^{2}+\gamma _{23} } \end{aligned}$$
(43)
$$\begin{aligned} g_{31}= & {} m^{4}\left[ {\gamma _{11} -\gamma _{12} \frac{\gamma _{21} m^{2}-\gamma _{23} }{\gamma _{22} m^{2}+\gamma _{23} }} \right] +(K_1 +K_2 m^{2}) \nonumber \\&+\,2m^{2}\pi \left[ {\gamma _{15} -\gamma _{14} \frac{\gamma _{21} -\gamma _{23} }{\gamma _{22} +\gamma _{23} }} \right] {\varPhi } \nonumber \\&+\,2\pi C_1 \left[ {\gamma _{15} -\gamma _{14} \frac{\gamma _{21} m^{2}-\gamma _{23} }{\gamma _{22} m^{2}+\gamma _{23} }} \right] {\varPhi } \end{aligned}$$
(44)
$$\begin{aligned} g_{32}= & {} 2m^{3}\pi \left[ {\gamma _{15} -\gamma _{14} \frac{\gamma _{21} m^{2}-\gamma _{23} }{\gamma _{22} m^{2}+\gamma _{23} }} \right] \nonumber \\&+\,\frac{3}{4}\pi ^{2}C_2 \gamma _{13} {\varPhi } \end{aligned}$$
(45)
$$\begin{aligned} g_{33}= & {} \frac{m^{4}\pi ^{2}}{4}\gamma _{13} \end{aligned}$$
(46)
$$\begin{aligned} g_c= & {} c_w +c_\psi \frac{m^{4}\gamma _{12} (\gamma _{21} m^{2}-\gamma _{23} )}{(\gamma _{22} m^{2}+\gamma _{23} )^{2}} \end{aligned}$$
(47)
$$\begin{aligned} g_q= & {} \frac{\hbox {2}k_c bL^{5/2}}{\pi ^{3}\overline{{D}}_{11} }\sin \frac{m}{2}\pi \end{aligned}$$
(48)
$$\begin{aligned} g_i= & {} -\frac{k_c \rho _0 L^{5/2}}{\pi ^{2}ME_0 } \end{aligned}$$
(49)

In Eqs. (44) and (45), \(C_{1}\) and \(C_{2}\) is dependent on the value of m. When m = 1, \(C_{1}\) and \(C_{2}\) are both equaled to be 1. In other case, \(C_{1}=C_{2} = 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Wang, H. Nonlinear low-velocity impact on damped and matrix-cracked hybrid laminated beams containing carbon nanotube reinforced composite layers. Nonlinear Dyn 89, 1863–1876 (2017). https://doi.org/10.1007/s11071-017-3557-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3557-3

Keywords

Navigation