Skip to main content
Log in

Application of linear and nonlinear vibration absorbers in micro-milling process in order to suppress regenerative chatter

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, linear and nonlinear vibration absorbers are designed to suppress regenerative chatter in micro-milling process. Suppressing regenerative chatter leads to improve surface finish. Micro-milling process is considered as a two degree of freedom system, and the run-out effects of cutting tool are also taken into account. Linear and nonlinear absorbers in two directions are composed of mass, spring and dashpot elements. The optimum values of the absorber parameters are determined by means of an optimization algorithm in order to minimize the cutting tool vibration. The effectiveness of different types of the absorbers in micro-milling process is illustrated. The optimum parameters for each type of absorbers are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Frahm, H.: Device for damping vibrations of bodies. US Patent No.989958 (1911)

  2. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3–5), 371–452 (2008)

    Article  Google Scholar 

  3. Snowdon, J.C.: Vibration and Shock in Damped Mechanical Systems. Wiley, New York (1968)

    Google Scholar 

  4. Febbo, M.: Optimal parameters and characteristics of a three degree of freedom dynamic vibration absorber. J. Vib. Acoust. 134(2), 10–21 (2012)

    Article  Google Scholar 

  5. Alexander, N.A., Schilder, F.: Exploring the performance of a nonlinear tuned mass damper. J. Sound Vib. 319(1–2), 15–24 (2009)

    Google Scholar 

  6. Karyeaclis, M., Caughey, T.K.: Stability of a semi-active impact damper. J. Appl. Mech. 56(4), 926–940 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Roberson, R.E.: Synthesis of a non-linear dynamic vibration absorber. J. Frank. Inst. 254(3), 205–220 (1952)

    Article  Google Scholar 

  8. Pipes, L.A.: Analysis of a non-linear dynamic vibration absorber. J. Appl. Mech. 20, 515–518 (1953)

    MATH  Google Scholar 

  9. Soom, A., Lee, M.: Optimal design of linear and nonlinear vibration absorbers for damped systems. J. Vib. Acoust. 105, 112–119 (1983)

    Article  Google Scholar 

  10. Nissen, J.C., Popp, K., Schmalhorst, B.: Optimization of a non-linear dynamic vibration absorber. J. Sound Vib. 110, 149–154 (1985)

    Article  Google Scholar 

  11. Oueini, S.S., Nayfeh, A.H., Pratt, J.R.: A Nonlinear vibration absorber for flexible structures. Nonlinear Dyn. 15(3), 259–282 (1998)

    Article  MATH  Google Scholar 

  12. Oueini, S.S., Chin, C.M., Nayfeh, A.H.: Dynamics of a cubic nonlinear vibration absorber. Nonlinear Dyn. 20(3), 283–295 (1999)

    Article  MATH  Google Scholar 

  13. Gourdon, E., Alexander, N.A., Lamarqu, C.H., Pernot, S., Taylor, C.A.: Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results. J. Sound Vib. 300(3–5), 522–551 (2007)

    Article  Google Scholar 

  14. Kim, C., Mayor, J., Ni, J.: A static model of chip formation in micro scale milling. J. Manuf. Sci. Eng. 126(4), 710–719 (2004)

    Article  Google Scholar 

  15. Kang, I., Kim, J.S., Kim, J.H., Kang, M., Seo, Y.: A mechanistic model of cutting force in the micro end milling process. J. Mater. Process. Technol. 187–188, 250–255 (2007)

    Article  Google Scholar 

  16. Bissacco, G., Hansen, H., Slunsky, J.: Modeling the cutting edge radius size effect for force prediction in micro milling. CIRP Ann. Manuf. Technol. 57(1), 113–116 (2008)

    Article  Google Scholar 

  17. Afazov, S.M., Ratchev, S.M., Segal, J.: Modeling and simulation of micro-milling cutting forces. J. Mater. Process. Technol. 210(15), 2154–2162 (2010)

    Article  Google Scholar 

  18. Afazov, S.M., Ratchev, S.M., Segal, J.: Prediction and experimental validation of micro-milling cutting forces of AISI H13 stainless steel at hardness between 35 and 60 HRC. Int. J. Adv. Manuf. Technol. 62(9), 887–899 (2012)

    Article  Google Scholar 

  19. Malas, A., Chatterjee, S.: Generating self-excited oscillation in a class of mechanical systems by relay-feedback. Nonlinear Dyn. 76(2), 1253–1269 (2014)

    Article  MathSciNet  Google Scholar 

  20. Bao, W.Y., Tansel, I.N.: Modeling micro-end-milling operations, part II: tool run-out. Int. J. Mach. Tool. Manuf. 40(15), 2175–2192 (2000)

    Article  Google Scholar 

  21. Afazov, S.M., Ratchev, S.M., Segal, J., Popov, A.A.: Chatter modeling in micro-milling by considering process nonlinearities. Int. J. Mach. Tool. Manuf. 56, 28–38 (2012)

    Article  Google Scholar 

  22. Kim, P., Seok, J.: Bifurcation analyses on the chatter vibrations of a turning process with state-dependent delay. Nonlinear Dyn. 69(3), 891–912 (2012)

    Article  MathSciNet  Google Scholar 

  23. Huang, X., Zhang, Y., Lv, C.: Probabilistic analysis of dynamic stability for milling process. Nonlinear Dyn. 86(3), 2105–2114 (2016)

    Article  Google Scholar 

  24. Niu, J., Ding, Y., Zhu, L., Ding, H.: Runge–Kutta methods for a semi-analytical prediction of milling stability. Nonlinear Dyn. 76(1), 289–304 (2014)

  25. Yin, C., Chen, Y.Q., Zhong, S.: Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems. Automatica 50(12), 3173–3181 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yin, C., Cheng, Y., Chen, Y.Q., Stark, B., Zhong, S.: Adaptive fractional-order switching-type control method design for 3D fractional-order nonlinear systems. Nonlinear Dyn. 82(1), 39–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lu, X.H., Jia, Z., Wang, H., Wang, X.X., Si, L., Gao, L.: Stability analysis for micro-milling nickel-based superalloy process. Int. J. Adv. Manuf. Technol. 86, 2503–2515 (2016)

    Article  Google Scholar 

  28. Starosvetsky, Y., Gendelman, O.V.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. II: Optimization of a nonlinear vibration absorber. Nonlinear Dyn. 51(1), 47–57 (2008)

    MATH  Google Scholar 

  29. Gendelman, O.V.: Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators. Nonlinear Dyn. 25, 237–253 (2001)

    Article  MATH  Google Scholar 

  30. Yang, J., Xiong, Y.P., Xing, J.T.: Power flow behaviour and dynamic performance of a nonlinear vibration absorber coupled to a nonlinear oscillator. Nonlinear Dyn. 80, 1063–1079 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This study has been started at the University of Modena and Reggio Emilia. The authors would like to thank the Lab SIMECH/INTERMECH MO.RE. (HIMECH District, Emilia Romagna Region) particularly Prof. Francesco Pellicano.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad S. Samani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakeri, S., S. Samani, F. Application of linear and nonlinear vibration absorbers in micro-milling process in order to suppress regenerative chatter. Nonlinear Dyn 89, 851–862 (2017). https://doi.org/10.1007/s11071-017-3488-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3488-z

Keywords

Navigation