Skip to main content
Log in

Darboux transformations for super-Schrödinger equation, super-Dirac equation and their exact solutions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The Darboux transformation (DT) for the super-integrable hierarchy has an essential difference from the general system. As we know, the super-integrable soliton equation hierarchies with four potentials are discussed. Starting from the spectral problems of super-AKNS hierarchy and super-Dirac hierarchy, a DT method for two super-integrable hierarchies is constructed, which is more complex than the general integrable system. Soliton solutions of super-Schrödinger equation and super-Dirac equation are presented by using DT, which contain some bright, dark and breather wave soliton solutions. Then, the properties of these solutions in the inhomogeneous media are discussed graphically to illustrate the influences of the variable coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang, H., Xia, T.C.: Super Jaulent–Miodek hierarchy and its super Hamiltonian structure, conservation laws and its self-consistent sources. Front. Math. Chin. 9, 1367–1379 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Zhao, Q.L., Li, Y.X., Li, X.Y., Sun, Y.P.: The finite-dimensional super integrable system of a super NLS-mKdV equation. Commun. Nonlinear. Sci. Numer. Simul. 17(11), 4044–4052 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antonuccio, F., Pinsky, S., Tsujimaru, S.: A comment on the light-cone vacuum in \(1+1\) dimensional super-Yang–Mills theory. Found. Phys. 30(3), 475–486 (2000)

    Article  MathSciNet  Google Scholar 

  4. Hu, X.B.: Integrable systems and related problems. Doctoral Dissertation, Computing Center of Chinese Academia Sinica (1990)

  5. Hu, X.B.: An approach to generate superextensions of integrable systems. J. Phys. A Math. Gen. 32, 619 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dong, H.H.: A subalgebra of Lie algebra A2 and its associated two types of loop algebras, as well as Hamiltonian structures of integrable hierarchy. J. Math. Phys. 50(5), 053519 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Tao, S.X., Xia, T.C.: Two super-integrable hierarchies and their super-Hamiltonian structures. Commun. Nonlinear. Sci. Numer. Simul. 16(1), 127–132 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dong, H.H., Wang, X.Z.: Lie algebras and Lie super algebra for the integrable couplings of NLSCMKdV hierarchy. Commun. Nonlinear. Sci. Numer. Simul. 14(12), 4071–4077 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kiseleva, A.V., Wolf, T.: Classification of integrable super-systems using the SsTools environment. Comput. Phys. Commun. 177(3), 315–328 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hiraku, A.: A convexity theorem for three tangled Hamiltonian torus actions, and super-integrable systems. Differ. Geom. Appl. 31(5), 577–593 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Serkin, V.N., Hasegawa, A.: Novel soliton solutions of the nonlinear Schrödinger equation mode. Phys. Rev. Lett. 85(21), 4502–4505 (2000)

    Article  Google Scholar 

  12. Felipe, R., Ongay, F.: Super Brockett equations: a graded gradient integrable system. Commun. Math. Phys. 220(1), 95–104 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Tian, B., Shan, W.R., Zhang, C.Y., Wei, G.M., Gao, Y.T.: Transformations for a generalized variable-coefficient nonlinear Schr\({\ddot{O}}\)dinger model from plasma physics, arterial mechanics and optical fibers with symbolic computation. Eur. Phys. J. B 47(3), 329–332 (2005)

    Article  Google Scholar 

  14. Zhang, J.L., Li, B.A., Wang, M.L.: The exact solutions and the relevant constraint conditions for two nonlinear Schrödinger equations with variable coefficients. Chaos Solitons Fractals 39(2), 858–865 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Beckers, J., Hussin, V.: Dynamical supersymmetries of the harmonic oscillator. Phys. Lett. A 118, 319–321 (1986)

    Article  MathSciNet  Google Scholar 

  16. Beckers, J., Dehin, D., Hussin, V.: Symmetries and supersymmetries of the quantum harmonic oscillator. J. Phys. A Math. Gen 20, 1137 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gauntlett, J.P., Gomis, J., Townsend, P.K.: Supersymmetry and the physical-phase-space formulation of spinning particles. Phys. Lett. B 248, 288–294 (1990)

    Article  Google Scholar 

  18. Leblanc, M., Lozano, G., Min, H.: Extended superconformal Galilean symmetry in Chern–Simons matter systems. Ann. Phys. 219, 328–348 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Duval, C., Horvthy, P.A.: On Schrödinger superalgebras. J. Math. Phys. 35, 2516 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nakayama, Y., Sakaguchi, M., Yoshida, K.: Non-relativistic M2-brane gauge theory and new superconformal algebra. J. High. Energy Phys. 2009, 04096 (2009)

    Google Scholar 

  21. Galajinsky, A., Masterov, I.: Remark on quantum mechanics with N \(=\) 2 Schrödinger supersymmetry. Phys. Lett. B 675, 116 (2009)

    Article  MathSciNet  Google Scholar 

  22. Caudrelier, V., Ragoucy, E.: Quantum resolution of the nonlinear super-Schrödinger equation. Int. J. Mod. Phys. A 19, 1559 (2004)

    Article  MATH  Google Scholar 

  23. Nakayama, Y., Shinsei, R., Sakaguchi, M., Yoshida, K.: A family of super Schrödinger invariant Chern–Simons matter systems. J. High. Energy Phys. 2009, P01 (2009)

    MATH  Google Scholar 

  24. Akhmediev, N., Ankiewicz, A.: Solitons: Nonlinear Pulses and Beams. Chapman and Hall, London (1997)

    MATH  Google Scholar 

  25. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, New York (2003)

    Google Scholar 

  26. Barnett, M.P., Capitani, J.F., Gathen, J.V., Gerhard, J.: Symbolic calculation in chemistry: selected examples. Int. J. Quantum Chem. 100(2), 80–104 (2004)

    Article  Google Scholar 

  27. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  28. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, New York (1991)

    Book  MATH  Google Scholar 

  29. Wadati, M.: Wave propagation in nonlinear lattice. I. J. Phys. Soc. Jpn. 38(3), 673–680 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gao, Y.T., Tian, B.: Reply to: Comment on: Spherical Kadomtsev–Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation. Phys. Lett. A 361(6), 523–528 (2007)

    Article  MATH  Google Scholar 

  31. Weiss, J., Tabor, M., Carnevale, G.: The Painleve property for partial differential equations. J. Math. Phys. 24(3), 522–526 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  33. Wazwaz, A.M.: Gaussian solitary wave solutions for nonlinear evolution equations with logarithmic nonlinearities. Nonlinear Dyn. 83, 591–596 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wazwaz, A.M., Rach, R.: Two reliable methods for solving the Volterra integral equation with a weakly singular kernel. J. Comput. Appl. Math. 302, 71–80 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wazwaz, A.M., Xu, G.Q.: An extended modified KdV equation and its Painleve integrability. Nonlinear Dyn. 86, 1455–1460 (2016)

    Article  MathSciNet  Google Scholar 

  36. Triki, H., Leblond, H., Mihalache, D.: Soliton solutions of nonlinear diffusion–reaction-type equations with time-dependent coefficients accounting for long-range diffusion. Nonlinear Dyn. 86, 2115–2126 (2016)

    Article  MathSciNet  Google Scholar 

  37. Deift, P., Trubowitz, E.: Inverse scattering on the line. Commun. Pure Appl. Math. 32(2), 121–251 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gu, C.H., Hu, H.S., Zhou, Z.: Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry. Springer, Berlin (2006)

    MATH  Google Scholar 

  39. Terng, C.L., Uhlenbeck, K.: Bäcklund transformations and loop group actions. Commun. Pure Appl. Math. 53(1), 1–75 (2000)

    Article  MATH  Google Scholar 

  40. Novikov, S.P., Manakov, S.V., Zakharov, V.E., Pitaevskii, L.P.: Theory of Solitons: The Inverse Scattering Method. Springer, Berlin (1984)

    MATH  Google Scholar 

  41. Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transform in Soliton Theory and Its Geometric Applications. Shanghai Scientific Technical Publishers (1999)

  42. Ding, H.Y., Xu, X.X., Zhao, X.D.: A hierarchy of lattice soliton equations and its Darboux transformation. Chin. Phys. 13(2), 125–131 (2004)

    Article  Google Scholar 

  43. Wu, Y.T., Geng, X.G.: A new hierarchy integrable differential–difference equations and Darboux transformation. J. Phys. A Math. Gen. 31(38), L677–L684 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xu, X.X., Yang, H.X., Sun, Y.P.: Darboux transformation of the modifed Toda lattice equation. Mod. Phys. Lett. B 20(11), 641–648 (2006)

    Article  MATH  Google Scholar 

  45. Xue, B., Li, F., Wang, H.Y.: Darboux transformation and conservation laws of a integrable evolution equations with \(3 \times 3\) lax pairs. Appl. Math. Comput. 269, 326–331 (2015)

    MathSciNet  Google Scholar 

  46. Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B Quantum Semiclass. Opt. 7, R53–R72 (2005)

    Article  Google Scholar 

  47. Carretero-Gonzalez, R., Frantzeskakis, D.J., Kevrekidis, P.G.: Nonlinear waves in Bose–Einstein condensates. Nonlinearity 21, R139–R202 (2008)

    Article  MATH  Google Scholar 

  48. Yan, Z.Y., Konotop, V.V.: Exact solutions to three-dimensional generalized nonlinear Schrödinger equations with varying potential and nonlinearities. Phys. Rev. E 80, 036607 (2009)

    Article  Google Scholar 

  49. Yan, Z.Y., Hang, C.: Analytical three-dimensional bright solitons and soliton-pairs in Bose–Einstein condensates with time-space modulation. Phys. Rev. A 80, 063626 (2009)

    Article  Google Scholar 

  50. Yu, F.J.: Nonautonomous rogue waves and ’catch’ dynamics for the combined Hirota-LPD equation with variable coefficients. Commun. Nonlinear. Sci. Numer. Simul. 34, 142–153 (2016)

    Article  MathSciNet  Google Scholar 

  51. Yu, F.J.: Matter rogue waves and management by external potentials for coupled Gross–Pitaevskii equation. Nonlinear Dyn. 80, 685–699 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Bagnato, V.S., Frantzeskakis, D.J., Kevrekidis, P.G., Malomed, B.A., Mihalache, D.: Bose–Einstein condensation: twenty years after. Rom. Rep. Phys. 67, 5–50 (2015)

    Google Scholar 

  53. Malomed, B., Torner, L., Wise, F., Mihalache, D.: On multidimensional solitons and their legacy in contemporary atomic, molecular and optical physics. J. Phys. B At. Mol. Opt. Phys. 49, 170502 (2016)

    Article  Google Scholar 

  54. Mihalache, D.: Localized structures in nonlinear optical media: a selection of recent studies. Rom. Rep. Phys. 67, 1383–1400 (2015)

    Google Scholar 

  55. Wang, D.S., Wei, X.Q.: Integrability and exact solutions of a two-component Korteweg–de Vries system. Appl. Math. Lett. 51, 60 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhao, L.C., Liu, J.: Localized nonlinear waves in a two-mode nonlinear fiber. J. Opt. Soc. Am. B 29, 3119–3127 (2012)

    Article  Google Scholar 

  57. Wang, D.S., Zhang, D.J., Yang, J.: Integrable properties of the general coupled nonlinear Schrödinger equations. J. Math. Phys. 51, 023510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. Li, Y.S., Zhang, L.N.: Super AKNS scheme and its infinite conserved currents. Il. Nuovo Cim. A. 93(2), 175–183 (1986)

    Article  Google Scholar 

  59. Ma, W.X., He, J.S., Qin, Z.Y.: A supertrace identity and its applications to superintegrable systems. J. Math. Phys. 49(3), 033511 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. Ding, J., Xu, J.X., Zhang, F.B.: Solutions of super linear Dirac equations with general potentials. Differ. Equa. Dyn. Syst. 17(3), 235–256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  61. Yuan, H.F.: Expansions for the dirac operator and related operators in super spinor space. Adv. Appl. Clifford Algebras 26(1), 499–512 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  62. Ding, J., Xu, J.X., Zhang, F.B.: Solutions of non-periodic super-quadratic Dirac equations. J. Math. Anal. Appl. 366(1), 266–282 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  63. Coulembier, K., De Bie, H.: Conformal symmetries of the super Dirac operator. Rev. Mat. Iberoam. 31(2), 373–410 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Liaoning Province, China (Grant No. 201602678).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fajun Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, F., Feng, L. & Li, L. Darboux transformations for super-Schrödinger equation, super-Dirac equation and their exact solutions. Nonlinear Dyn 88, 1257–1271 (2017). https://doi.org/10.1007/s11071-016-3308-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3308-x

Keywords

Navigation