Skip to main content
Log in

Matter rogue waves and management by external potentials for coupled Gross–Pitaevskii equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The analytical matter rogue wave solutions are reported for the coupled Gross–Pitaevskii equation by using the similarity transformation and Darboux transformation. We study the effect of the time-dependent linear and quadratic potentials (flying-bird potential) on the profiles and dynamics of non-autonomous rogue wave solution. A non-autonomous rogue wave and bright-dark rogue wave solutions are constructed and exhibited. The managements of external potential and the dynamic behaviors of the rogue wave solutions are investigated analytically. We present the general approach and use it to calculate non-autonomous rogue wave solutions and consider the potential applications for the rogue wave phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agrawal, G.P.: Nonlinear Fiber Optics. Academic, New York (1995)

    Google Scholar 

  2. Scott, A.C.: Launching a Davydov soliton: I. Soliton analysis. Phys. Scr. 29, 279–283 (1984)

    Article  Google Scholar 

  3. Bashkin, E.P., Vagov, A.V.: Instability and stratification of a two-component Bose-Einstein condensate. Phys. Rev. B 56, 6207–6212 (1997)

    Article  Google Scholar 

  4. Yan, Z.Y.: Financial rogue waves. Commun. Theor. Phys. 54, 947–949 (2010)

    Article  MATH  Google Scholar 

  5. Dysthe, K., Krogstad, H.E., Müller, P.: Oceanic rogue waves. Annu. Rev. Fluid Mech. 40, 287–310 (2008)

    Article  Google Scholar 

  6. Serkin, V.N., Hasegawa, A.: Novel soliton solutions of the nonlinear Schr\(\ddot{o}\)dinger equation model. Phys. Rev. Lett. 85, 4502–4505 (2000)

    Article  Google Scholar 

  7. Kruglov, V.I., Peacock, A.C., Harvey, J.D.: Exact solutions of the generalized nonlinear Schr\(\ddot{o}\)dinger equation with distributed coefficients. Phys. Rev. E 71, 056619 (2005)

    Article  MathSciNet  Google Scholar 

  8. Tian, B., Shan, W.R., Zhang, C.Y., Wei, G.M., Gao, Y.T.: Schr\(\ddot{o}\)dinger model from plasma physics, arterial mechanics and optical fibers with symbolic computation. Eur. Phys. J. B 47, 329–332 (2005)

    Article  Google Scholar 

  9. Agrawal, G.P.: Applications of Nonlinear Fiber Optics. Academic Press, New York (2001)

    Google Scholar 

  10. Zhang, J.L., Li, B.A., Wang, M.L.: The exact solutions and the relevant constraint conditions for two nonlinear Schr\(\ddot{o}\)dinger equations with variable coefficients. Chaos Solitons Fractals 39, 858–865 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. He, J.S., Li, Y.S.: Designable integrability of the variable coefficient nonlinear Schr\(\ddot{o}\)dinger equations. Stud. Appl. Math. 126, 1–15 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hao, R., Li, L., Li, Z., Xue, W., Zhou, G.: A new approach to exact soliton solutions and soliton interaction for the nonlinear Schr\(\ddot{o}\)dinger equation with variable coefficients. Opt. Commun. 236, 79–86 (2004)

    Article  Google Scholar 

  13. Guo, B.L., Ling, L.M.: Rogue wave, breathers and bright-dark-rogue solutions for the coupled Schr\(\ddot{o}\)dinger equations. Chin. Phys. Lett. 28, 110202 (2011)

    Article  Google Scholar 

  14. Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schr\(\ddot{o}\)dinger equation. Phys. Rev. E 80, 026601 (2009)

    Article  Google Scholar 

  15. Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)

    Article  MATH  Google Scholar 

  16. Sulem, C., Sulem, P.L.: The Nonlinear Schr\(\ddot{o}\)inger Equation: Self-Focusing and Wave Collapse. Springer, New York (1999)

    Google Scholar 

  17. Chen, H.H., Liu, C.S.: Solitons in nonuniform media. Phys. Rev. Lett. 37, 693–697 (1976)

    Article  MathSciNet  Google Scholar 

  18. Ankiewicz, A.: http://demonstrations.wolfram.com. Rogue Ocean Waves, URL of website (2009)

  19. Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrodinger equation. Phys. Rev. E 80, 026601–026609 (2009)

    Article  Google Scholar 

  20. Ma, Y.C.: The perturbed plane-wave solution of the cubic Schr\(\ddot{o}\)dinger equation. Stud. Appl. Math. 60, 43–58 (1979)

    MathSciNet  Google Scholar 

  21. Akhmediev, N., Korneev, V.I.: Modulation instability and periodic solutions of the nonlinear Schr\(\ddot{o}\)dinger equation. Theor. Math. Phys. 69, 1089–1093 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Dysthe, K.B., Trulsen, K.: Note on breather type solutions of the NLS as models for freak-waves. Phys. Scr. T. 82, 48–52 (1999)

    Article  Google Scholar 

  23. Ten, I., Tomita, H.: Reports of RIAM Symposium No. 17SP1-2, Proceedings of a Symposium Held at Chikushi Campus, Kyushu University, Kasuga, Fukuoka, Japan (2006)

  24. Voronovich, V.V., Shrira, V.I., Thomas, G.: Can bottom friction suppress ‘freak wave’ formation. J. Fluid Mech. 604, 263–296 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Akhmediev, N., Soto-Crespo, J.M., Ankiewicz, A.: Extreme waves that appear from nowhere: on the nature of rogue waves. Phys. Lett. A 373, 2137–2145 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Benjamin, T.B., Feir, J.E.: The disintegration of wavetrains in deep water. Part 1. J. Fluid Mech. 27, 417–431 (1967)

    Article  MATH  Google Scholar 

  27. Bespalov, V.I., Talanov, V.I.: Filamentary structure of light beams in nonlinear liquids. JETP Lett. 3, 307–310 (1966)

    Google Scholar 

  28. Muller, P., Garrett, C., Osborne, A.: Rogue waves. Oceanography 18, 66–75 (2005)

    Article  Google Scholar 

  29. Chambarel, J., Kharif, C., Kimmoun, O.: Generation of two-dimensional steep water waves on finite depth with and without wind. Eur. J. Mech. B Fluids. 29, 132–142 (2010)

    Article  MATH  Google Scholar 

  30. Kurkin, A.A., Pelinovsky, E.N.: Killer-Waves: Facts, Theory, and Modeling (Book in Russian). Nizhny Novgorod (2004)

  31. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–1057 (2007)

    Article  Google Scholar 

  32. Akhmediev, N., Ankiewicz, A.: Solitons: Nonlinear Pulses and Beams. Chapman and Hall, London (1997)

    Google Scholar 

  33. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons, From Fibers to Photonic Crystals. Academic, New York (2003)

    Google Scholar 

  34. Barnett, M.P., Capitani, J.F., Von Zur Gathen, J., Gerhard, J.: The Gauss-Bessel quadrature: a tool for the evaluation of Barnett–Coulson/Lowdin functions. Int. J. Quantum Chem. 100, 80–104 (2004)

    Article  Google Scholar 

  35. Matveev, V.B., Salle, M.A.: Darboux Transformation and Solitons. Springer, Berlin (1991)

    Google Scholar 

  36. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, New York (1991)

    Book  MATH  Google Scholar 

  37. Wadati, M.: Wave propagation in nonlinear lattice. I. J. Phys. Soc. Jpn. 38, 673–680 (1975)

    Article  MathSciNet  Google Scholar 

  38. Gao, Y.T., Tian, B.: Reply to: Comment on: Spherical Kadomtsev–Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation. Phys. Lett. A 361, 523–528 (2007)

    Article  MATH  Google Scholar 

  39. Weiss, J., Tabor, M., Carnevale, G.: The Painleve property for partial differential equations. J. Math. Phys. 24, 522–529 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  40. Hirota, R.: The Direct Method in Soliton Theory. Cambridge Univ. Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  41. Kharif, C., Pelinovsky, E.: Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. B/Fluids 22, 603–634 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  42. Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Vector rogue waves in binary mixtures of Bose-Einstein condensates. Eur. Phys. J. Spec. Top. 185, 169–180 (2010)

    Article  Google Scholar 

  43. Odent, V., Taki, M., Louvergneaux, E.: Experimental spatial rogue patterns in an optical feedback system. Nat. Hazards Earth Syst. Sci. 10, 2727–2732 (2010)

    Article  Google Scholar 

  44. Yan, Z.Y., Konotop, V.V.: Exact solutions to three-dimensional generalized nonlinear Schr\(\ddot{o}\)dinger equations with varying potential and nonlinearities. Phys. Rev. E 80, 036607 (2009)

    Article  Google Scholar 

  45. Solli, D.R., Ropers, C., Jalali, B.: Active control of optical rogue waves for stimulated supercontinuum generation. Phys. Rev. Lett. 101, 233902 (2008)

    Article  Google Scholar 

  46. Fedele, F.: Rogue waves in oceanic turbulence. Phys. D 237, 2127–2131 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  47. Shats, M., Punzmann, H., Xia, H.: Capillary rogue waves. Phys. Rev. Lett. 104, 104503 (2010)

    Article  Google Scholar 

  48. Ganshin, A.N., Efimov, V.B., Kolmakov, G.V., Mezhov-Deglin, L.P., McClintock, P.V.E.: Rogue events in the group velocity horizon. Phys. Rev. Lett. 101, 065303 (2008)

    Article  Google Scholar 

  49. Akhmediev, N., Pelinovsky, E.: Could rogue waves be used as efficient weapons against enemy ships. Eur. Phys. J. Spec. Top. Spec. Issue 185, 259–266 (2010)

    Article  Google Scholar 

  50. Yan, Z.Y.: Nonautonomous “rogons” in the inhomogeneous nonlinear Schr\(\ddot{o}\)dinger equation with variable coefficients. Phys. Lett. A 374, 672–679 (2010)

    Article  MATH  Google Scholar 

  51. Dai, C.Q., Wang, X.G., Zhang, J.F.: Nonautonomous spatiotemporal localized structures in the inhomogeneous optical fibers: interaction and control. Ann. Phys. 326, 645–656 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  52. Dai, C.Q., Zhou, G.Q., Zhang, J.F.: Controllable optical rogue waves in the femtosecond regime. Phys. Rev. E 85, 016603 (2012)

    Article  Google Scholar 

  53. Xu, S.W., He, J.S., Wang, L.H.: Two kinds of rogue waves of the general nonlinear Schrodinger equation with derivative. Eur. Phys. Lett. 97, 30007 (2012)

    Article  Google Scholar 

  54. Zhao, L.C., Liu, J.: Localized nonlinear waves in a two-mode nonlinear fiber. J. Opt. Soc. Am. B 29, 3119–3127 (2012)

    Article  Google Scholar 

  55. Wen, L., et al.: Matter rogue wave in Bose-Einstein condensates with attractive atomic interaction. Eur. Phys. J. D 64, 473–478 (2011)

  56. Yang, G.Y., et al.: Peregrine rogue waves induced by the interaction between a continuous wave and a soliton. Phys. Rev. E 85, 046608 (2012)

    Article  Google Scholar 

  57. Dai, C.Q., Wang, X.G., Zhou, G.Q.: Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials. Phys. Rev. A 89, 013834 (2014)

    Article  Google Scholar 

  58. Wang, Y.Y., Dai, C.Q., Wang, X.G.: Stable localized spatial solitons in PT-symmetric potentials with power-law nonlinearity. Nonlinear Dyn. 77, 1323–1330 (2014)

    Article  MathSciNet  Google Scholar 

  59. Dai, C.Q., Zhu, H.P.: Superposed Akhmediev breather of the 3-dimensional generalized nonlinear Schrödinger equation with external potentials. Ann. Phys. 341, 142–152 (2014)

    Article  MathSciNet  Google Scholar 

  60. Zhu, H.P.: Nonlinear tunneling for controllable rogue waves in two dimensional graded-index waveguides. Nonlinear Dyn. 72, 873–882 (2013)

    Article  Google Scholar 

  61. Wu, X.F., Hua, G.S., Ma, Z.Y.: Novel rogue waves in an inhomogenous nonlinear medium with external potentials. Commun. Nonlinear Sci. Numer. Simul. 18, 3325–3336 (2013)

    Article  MathSciNet  Google Scholar 

  62. Zhu, H.P.: Spatiotemporal solitons on cnoidal wave backgrounds in three media with different distributed transverse diffraction and dispersion. Nonlinear Dyn. 76, 1651–1659 (2014)

    Article  Google Scholar 

  63. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98, 074102 (2007)

    Article  Google Scholar 

  64. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Solitary waves in nonautonomous nonlinear and dispersive systems: nonautonomous solitons. J. Mod. Opt. 57, 1456–1472 (2010)

    Article  MATH  Google Scholar 

  65. Mani Rajan, M.S., Mahalingam, A.: Multi-soliton propagation in a generalized inhomogeneous nonlinear Schrödinger-Maxwell-Bloch system with loss/gain driven by an external potential. J. Math. Phys. 54, 043514 (2013)

    Article  MathSciNet  Google Scholar 

  66. Mani Rajan, M.S., Mahalingam, A., Uthayakumar, A.: Nonlinear tunneling of nonautonomous optical solitons in combined nonlinear Schrödinger and Maxwell-Bloch systems. J. Opt. 14, 105204 (2012)

    Article  Google Scholar 

  67. Zhao, L.C., He, S.L.: Matter wave solitons in coupled system with external potentials. Phys. Lett. A 375, 3017–3020 (2011)

    Article  Google Scholar 

  68. Zhao, L.C., Yang, Z.Y., Ling, L.M., Liu, J.: Precisely controllable bright nonautonomous solitons in Bose-Einstein condensate. Phys. Lett. A 375, 1839–1842 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Liaoning Province, China (Grant No. 2013020056) and Project supported by the National Natural Science Foundation of China (Grant No.11301349).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fajun Yu.

Appendix: The elements of the matrix \(\Psi \)

Appendix: The elements of the matrix \(\Psi \)

$$\begin{aligned}&\psi _{{11}}= \psi _{{12}}=\psi _{{13}}\\&=-\frac{1}{24} {\frac{1}{{\left( \sqrt{3}{\alpha }^{3}-9\,\sqrt{3}{a}^{2}\alpha -9\,i{\alpha }^{2}a+9\,i{a}^{3}\right) ^{2}}}}\\&\quad \times \left( 1944\,\alpha _{{1}}{a}^{6}-72\,\alpha _{{1}}{\alpha }^{6}-9\,i\eta {a}^{3}\alpha _{{3}}-4320\,i{\alpha }^{3}\sqrt{3}{a}^{3}\alpha _{{1}}\right. \\&\quad \left. +\,432\,i{\alpha }^{5}\sqrt{3}a\alpha _{{1}}+27\,{a}^{4}\alpha _{{3}}{\eta }^{2}-1080\,t\alpha _{{3}}\eta {a}^{3}{\alpha }^{2}\right. \\&\quad \left. +\,3888\,i\alpha \,\sqrt{3}\alpha _{{1}}{a}^{5}+1620\,\alpha _{{3}}{\tau }^{2}{\alpha }^{4}{a}^{2}-4860\,\alpha _{{3}}{\tau }^{2}{a}^{4}{\alpha }^{2}\right. \\&\quad \left. -\,1080\,\eta {a}^{3}\alpha _{{2}}{\alpha }^{2}+180\,\eta {\alpha }^{4}a\alpha _{{2}}+540\,i\tau \alpha _{{3}}\eta \sqrt{3}{a}^{4}\alpha \right. \\&\quad \left. +\,12\,i\tau \alpha _{{3}}\eta {\alpha }^{5}\sqrt{3}-360\,it\alpha _{{3}}\eta \sqrt{3}{a}^{2}{\alpha }^{3}+432\,i\tau \alpha _{{2}}\sqrt{3}{\alpha }^{5}a\right. \\&\quad \left. +\,1944\,\tau \alpha _{{2}}{a}^{6}{-}72\,\tau \alpha _{{2}}{\alpha }^{6}-54\,{\alpha }^{2}{a}^{2}\alpha _{{3}}{\eta }^{2}{-}9720\,t\alpha _{{2}}{a}^{4}{\alpha }^{2}\right. \\&\quad \left. -\,4320\,i\tau \alpha _{{2}}\sqrt{3}{\alpha }^{3}{a}^{3}\!+\!3888 i\tau \alpha _{{2}}\sqrt{3}{a}^{5}\alpha \!-\!360 i{\alpha }^{3}\sqrt{3}\eta {a}^{2}\alpha _{{2}}\right. \\&\quad \left. -\,12\,i{\alpha }^{3}\sqrt{3}a\alpha _{{3}}{\eta }^{2}+12\,i{\alpha }^{5}\sqrt{3}\eta \alpha _{{2}}+540\,i\alpha \,\sqrt{3}{a}^{4}\alpha _{{2}}\eta \right. \\&\quad \left. +\,36\,i\alpha \,\sqrt{3}{a}^{3}\alpha _{{3}}{\eta }^{2}+9\,i\eta {\alpha }^{2}a\alpha _{{3}}+216\,i\alpha _{{3}}{\tau }^{2}\sqrt{3}{\alpha }^{5}a\right. \\&\quad \left. -\,2160\,i\alpha _{{3}}{\tau }^{2}\sqrt{3}{\alpha }^{3}{a}^{3}+1944\,i\alpha _{{3}}{\tau }^{2}\sqrt{3}{a}^{5}\alpha -9720\,{a}^{4}{\alpha }^{2}\alpha _{{1}}\right. \\&\quad \left. +\,3240\,{\alpha }^{4}{a}^{2}\alpha _{{1}}-36\,\alpha _{{3}}{\tau }^{2}{\alpha }^{6}+9\,\alpha \,\sqrt{3}\eta {a}^{2}\alpha _{{3}}-{\alpha }^{3}\sqrt{3}\eta \alpha _{{3}}\right. \\&\quad \left. +\,3\,{\alpha }^{4}\alpha _{{3}}{\eta }^{2}{+}180\,t\alpha _{{3}}\eta a{\alpha }^{4}{+}324\,t\alpha _{{3}}\eta {a}^{5}{+}3240\,\tau \alpha _{{2}}{\alpha }^{4}{a}^{2}\right. \\&\quad \left. +\,972\,\alpha _{{3}}{\tau }^{2}{a}^{6}+324\,{a}^{5}\alpha _{{2}}\eta \right) , \end{aligned}$$
$$\begin{aligned}&\psi _{{21}}=\psi _{{22}}=\psi _{{23}}\\&=-{\frac{1}{96}}\,{\frac{1}{{\alpha }^{2} \left( \sqrt{3}{\alpha }^{3}-9\,\sqrt{3}{a}^{2}\alpha -9\,i{\alpha }^{2}a+9\,i{a}^{3} \right) ^{2}}}\\&\quad \times \left( -1080\,{\alpha }^{4}{a}^{2}\alpha _{{3}}\tau -90\,{\alpha }^{4}\alpha _{{3}}a\eta -1080\,{a}^{3}{\alpha }^{3}\alpha _{{3}}\tau \right. \\&\quad \left. -\,162\,{a}^{2}{\alpha }^{3}\alpha _{{3}}\eta +1620\,{a}^{4}{\alpha }^{2}\alpha _{{3}}\tau +234\,{a}^{3}{\alpha }^{2}\alpha _{{3}}\eta \right. \\&\quad \left. +\,324\,{a}^{5}\alpha \,\alpha _{{3}}\tau +54\,{a}^{4}\alpha \,\alpha _{{3}}\eta +36\,{\alpha }^{6}\alpha _{{3}}\tau +12\,{\alpha }^{5}\alpha _{{3}}\eta \right. \\&\quad \left. -\,19440\,i{\alpha }^{4}{a}^{4}\alpha _{{1}}-23328\,i{a}^{5}{\alpha }^{3}\alpha _{{1}}+9\,ia{\alpha }^{3}\alpha _{{3}}\right. \\&\quad \left. +\, 3888\,i{a}^{6}{\alpha }^{2}\alpha _{{1}}-135\,i{a}^{2}{\alpha }^{2}\alpha _{{3}}-9\,i{a}^{3}\alpha \,\alpha _{{3}}+12\,i{\alpha }^{6}\sqrt{3}\alpha _{{2}}\right. \\&\quad \left. -\, 72\,i{\alpha }^{8}\alpha _{{3}}{\tau }^{2}+180\,{\alpha }^{5}a\alpha _{{2}}-81\,\alpha \,\sqrt{3}{a}^{3}\alpha _{{3}}+72\,{\alpha }^{8}\sqrt{3}\alpha _{{3}}{\tau }^{2}\right. \\&\quad \left. +\,144\,{\alpha }^{8}\sqrt{3}\tau \alpha _{{2}}-864\,{\alpha }^{7}\sqrt{3}a\alpha _{{1}}-24\,{\alpha }^{7}\sqrt{3}\eta \alpha _{{2}}\right. \\&\quad \left. -\,6480\,{\alpha }^{6}\sqrt{3}{a}^{2}\alpha _{{1}}-6\,{\alpha }^{6}\sqrt{3}\alpha _{{3}}{\eta }^{2}+8640\,{\alpha }^{5}\sqrt{3}{a}^{3}\alpha _{{1}}\right. \\&\quad \left. -\,7776\,{\alpha }^{3}\sqrt{3}{a}^{5}\alpha _{{1}}+33\,{\alpha }^{3}\sqrt{3}a\alpha _{{3}}+2160\,{\alpha }^{4}\sqrt{3}\eta {a}^{3}\alpha _{{3}}\tau \right. \\&\quad \left. -\,1080\,{\alpha }^{3}\sqrt{3}{a}^{4}\eta \alpha _{{3}}\tau +36\,{\alpha }^{6}\alpha _{{2}}-864\,{\alpha }^{7}\sqrt{3}at\alpha _{{2}}\right. \\&\quad \left. -\,432\,{\alpha }^{7}\sqrt{3}a\alpha _{{3}}{\tau }^{2}-24\,{\alpha }^{7}\sqrt{3}\eta \alpha _{{3}}\tau -3240\,{\alpha }^{6}\sqrt{3}{a}^{2}\alpha _{{3}}{\tau }^{2}\right. \\&\quad \left. -\,6480\,{\alpha }^{6}\sqrt{3}{a}^{2}\tau \alpha _{{2}}-360\,{\alpha }^{6}\sqrt{3}\eta a\alpha _{{2}}+4320\,{\alpha }^{5}\sqrt{3}{a}^{3}\alpha _{{3}}{\tau }^{2}\right. \\&\quad \left. +\,8640\,{\alpha }^{5}\sqrt{3}{a}^{3}\tau \alpha _{{2}}+720\,{\alpha }^{5}\sqrt{3}\eta {a}^{2}\alpha _{{2}}+24\,{\alpha }^{5}\sqrt{3}a\alpha _{{3}}{\eta }^{2}\right. \\&\quad \left. -\,1296\,i{\alpha }^{7}a\alpha _{{3}}{\tau }^{2}-2592\,i{\alpha }^{7}a\tau \alpha _{{2}}-72\,i{\alpha }^{7}\eta \alpha _{{3}}\tau \right. \\&\quad \left. +\,3240\,i{\alpha }^{6}{a}^{2}\alpha _{{3}}{\tau }^{2}+6480\,i{\alpha }^{6}{a}^{2}\tau \alpha _{{2}}\right. \\&\quad \left. +\,360\,i{\alpha }^{6}a\eta \alpha _{{2}}+360\,i{\alpha }^{6}a\eta \alpha _{{3}}\tau -360\,i{\alpha }^{4}\sqrt{3}{a}^{2}\alpha _{{3}}\tau \right. \\&\quad \left. -\,42\,i{\alpha }^{4}\sqrt{3}\alpha _{{3}}a\eta +1080\,i{\alpha }^{3}\sqrt{3}{a}^{3}\alpha _{{3}}\tau +126\,i{\alpha }^{3}\sqrt{3}{a}^{2}\alpha _{{3}}\eta \right. \\&\quad \left. +\,90\,i{\alpha }^{2}\sqrt{3}{a}^{3}\alpha _{{3}}\eta -324\,i\alpha \,\sqrt{3}{a}^{5}\alpha _{{3}}\tau -1080\,{a}^{3}{\alpha }^{3}\alpha _{{2}}\right. \\&\quad \left. +\,1620\,{a}^{4}{\alpha }^{2}\alpha _{{2}}+324\,{a}^{5}\alpha \,\alpha _{{2}}+144\,{\alpha }^{8}\sqrt{3}\alpha _{{1}}-{\alpha }^{4}\sqrt{3}\alpha _{{3}}\right. \\&\quad \left. -144\,i{\alpha }^{8}\alpha _{{1}}+9\,i{\alpha }^{4}\alpha _{{3}}+54\,i{a}^{4}\alpha _{{3}}+180\,{\alpha }^{5}a\alpha _{{3}}\tau \right. \\&\quad \left. -\,7776\,{\alpha }^{3}\sqrt{3}{a}^{5}\tau \alpha _{{2}}-1080\,{\alpha }^{3}\sqrt{3}{a}^{4}\eta \alpha _{{2}}-72\,{\alpha }^{3}\sqrt{3}{a}^{3}\alpha _{{3}}{\eta }^{2}\right. \\&\quad \left. -1944\,{\alpha }^{2}\sqrt{3}{a}^{6}\alpha _{{3}}{\tau }^{2}-3888\,{\alpha }^{2}\sqrt{3}{a}^{6}\tau \alpha _{{2}}\right. \\&\quad \left. -\,648\,{\alpha }^{2}\sqrt{3}{a}^{5}\eta \alpha _{{2}}-54\,{\alpha }^{2}\sqrt{3}{a}^{4}\alpha _{{3}}{\eta }^{2}-3888\,{\alpha }^{2}\sqrt{3}{a}^{6}\alpha _{{1}}\right. \\&\quad \left. +\,9\,{\alpha }^{2}\sqrt{3}{a}^{2}\alpha _{{3}}+19440\,{\alpha }^{4}\sqrt{3}{a}^{4}\alpha _{{1}}-1080\,{\alpha }^{4}{a}^{2}\alpha _{{2}}\right. \\&\quad \left. -\,54\,i\alpha \,\sqrt{3}{a}^{4}\alpha _{{3}}\eta -180\,i{\alpha }^{5}\sqrt{3}a\alpha _{{3}}\tau -360\,i{\alpha }^{4}\sqrt{3}{a}^{2}\alpha _{{2}}\right. \\&\quad \left. +\,1080\,i{\alpha }^{3}\sqrt{3}{a}^{3}\alpha _{{2}}+540\,i{\alpha }^{2}\sqrt{3}{a}^{4}\alpha _{{2}}+540\,i{\alpha }^{2}\sqrt{3}{a}^{4}\alpha _{{3}}\tau \right. \\&\quad \left. -\,324\,i\alpha \,\sqrt{3}{a}^{5}\alpha _{{2}}+12\,i{\alpha }^{6}\sqrt{3}\alpha _{{3}}\tau -180\,i{\alpha }^{5}\sqrt{3}a\alpha _{{2}}\right. \\&\quad \left. -\, 8\,i{\alpha }^{5}\sqrt{3}\alpha _{{3}}\eta -144\,i{\alpha }^{8}\tau \alpha _{{2}}-2592\,i{\alpha }^{7}a\alpha _{{1}}\right. \\&\quad \left. -\, 72\,i{\alpha }^{7}\eta \alpha _{{2}}+6480\,i{\alpha }^{6}{a}^{2}\alpha _{{1}}+6\,i{\alpha }^{6}\alpha _{{3}}{\eta }^{2}\right. \\&\quad \left. +\, 25920\,i{\alpha }^{5}{a}^{3}\alpha _{{1}}-648\,{\alpha }^{2}\sqrt{3}{a}^{5}\eta \alpha _{{3}}\tau \right. \\&\quad \left. -\, 360\,{\alpha }^{6}\sqrt{3}a\eta \alpha _{{3}}\tau +720\,{\alpha }^{5}\sqrt{3}\eta {a}^{2}\alpha _{{3}}\tau \right. \\&\left. +9720\,{\alpha }^{4}\sqrt{3}{a}^{4}\alpha _{{3}}{\tau }^{2}+19440\,{\alpha }^{4}\sqrt{3}{a}^{4}\tau \alpha _{{2}}\right. \\&\quad \left. +\, 2160\,{\alpha }^{4}\sqrt{3}\eta {a}^{3}\alpha _{{2}}+108\,{\alpha }^{4}\sqrt{3}{a}^{2}\alpha _{{3}}{\eta }^{2}\right. \\&\quad \left. -\, 3888\,{\alpha }^{3}\sqrt{3}{a}^{5}\alpha _{{3}}{\tau }^{2}+25920\,i{\alpha }^{5}{a}^{3}\tau \alpha _{{2}}\right. \\&\quad \left. +\, 12960\,i{\alpha }^{5}{a}^{3}\alpha _{{3}}{\tau }^{2}+2160\,i{\alpha }^{5}\eta {a}^{2}\alpha _{{2}}\right. \end{aligned}$$
$$\begin{aligned}&\quad \left. +\,2160\,i{\alpha }^{5}\eta {a}^{2}\alpha _{{3}}\tau +72\,i{\alpha }^{5}a\alpha _{{3}}{\eta }^{2}\right. \\&\quad \left. -\,19440\,i{\alpha }^{4}{a}^{4}\tau \alpha _{{2}}-9720\,i{\alpha }^{4}{a}^{4}\alpha _{{3}}{\tau }^{2}-2160\,i{\alpha }^{4}\eta {a}^{3}\alpha _{{2}}\right. \\&\quad \left. -\,2160\,i{\alpha }^{4}\eta {a}^{3}\alpha _{{3}}\tau -108\,i{\alpha }^{4}{a}^{2}\alpha _{{3}}{\eta }^{2}-23328\,i{a}^{5}{\alpha }^{3}\tau \alpha _{{2}}\right. \\&\quad \left. -\,11664\,i{a}^{5}{\alpha }^{3}\alpha _{{3}}{\tau }^{2}-3240\,i{a}^{4}{\alpha }^{3}\eta \alpha _{{2}}-3240\,i{a}^{4}{\alpha }^{3}\eta \alpha _{{3}}t\right. \\&\quad \left. -\,216\,i{a}^{3}{\alpha }^{3}\alpha _{{3}}{\eta }^{2}+3888\,i{a}^{6}{\alpha }^{2}\tau \alpha _{{2}}+1944\,i{a}^{6}{\alpha }^{2}\alpha _{{3}}{\tau }^{2}\right. \\&\quad \left. +\,648\,i{a}^{5}{\alpha }^{2}\eta \alpha _{{2}}+648\,i{a}^{5}{\alpha }^{2}\eta \alpha _{{3}}t+54\,i{a}^{4}{\alpha }^{2}\alpha _{{3}}{\eta }^{2} \right) ,\\ \end{aligned}$$
$$\begin{aligned}&\psi _{{31}}=\psi _{{32}}=\psi _{{33}}\\&={\frac{1}{96}}\,{\frac{1}{{\alpha }^{2} \left( \sqrt{3}{\alpha }^{3}-9\,\sqrt{3}{a}^{2}\alpha -9\,i{\alpha }^{2}a+9\,i{a}^{3} \right) ^{2}}}\\&\quad \times \,\left( -2160\,{\alpha }^{4}\sqrt{3}\eta {a}^{3}\alpha _{{3}}\tau -108\,{\alpha }^{4}\sqrt{3}{a}^{2}\alpha _{{3}}{\eta }^{2}\right. \\&\quad \left. -\, 3888\,{\alpha }^{3}\sqrt{3}{a}^{5}\alpha _{{3}}{\tau }^{2}-7776\,{\alpha }^{3}\sqrt{3}{a}^{5}\tau \alpha _{{2}}\right. \\&\quad \left. -\, 1080\,{\alpha }^{3}\sqrt{3}{a}^{4}\eta \alpha _{{2}}-72\,{\alpha }^{3}\sqrt{3}{a}^{3}\alpha _{{3}}{\eta }^{2}\right. \\&\quad \left. +\, 720\,{\alpha }^{5}\sqrt{3}\eta {a}^{2}\alpha _{{3}}\tau -1080\,{\alpha }^{3}\sqrt{3}{a}^{4}\eta \alpha _{{3}}\tau \right. \\&\quad \left. +\, 1944\,{\alpha }^{2}\sqrt{3}{a}^{6}\alpha _{{3}}{\tau }^{2}+3888\,{\alpha }^{2}\sqrt{3}{a}^{6}\tau \alpha _{{2}}\right. \\&\quad \left. -\, 864\,{\alpha }^{7}\sqrt{3}a\tau \alpha _{{2}}+3240\,{\alpha }^{6}\sqrt{3}{a}^{2}\alpha _{{3}}{\tau }^{2}\right. \\&\quad \left. +\,6480\,{\alpha }^{6}\sqrt{3}{a}^{2}\tau \alpha _{{2}}+360\,{\alpha }^{6}\sqrt{3}a\eta \alpha _{{2}}\right. \\&\quad \left. +\, 648\,{\alpha }^{2}\sqrt{3}{a}^{5}\eta \alpha _{{3}}\tau -324\,i\alpha \,\sqrt{3}{a}^{5}\alpha _{{2}}\right. \\&\quad \left. -\, 540\,i{\alpha }^{2}\sqrt{3}{a}^{4}\alpha _{{3}}\tau +23328\,i{a}^{5}{\alpha }^{3}\tau \alpha _{{2}}\right. \\&\quad \left. +\, 11664\,i{a}^{5}{\alpha }^{3}\alpha _{{3}}{\tau }^{2}+3240\,i{a}^{4}{\alpha }^{3}\eta \alpha _{{2}}\right. \\&\quad \left. +\, 3240\,i{a}^{4}{\alpha }^{3}\eta \alpha _{{3}}\tau +216\,i{a}^{3}{\alpha }^{3}\alpha _{{3}}{\eta }^{2}\right. \\&\quad \left. +\, 3888\,i{a}^{6}{\alpha }^{2}\tau \alpha _{{2}}+1944\,i{a}^{6}{\alpha }^{2}\alpha _{{3}}{\tau }^{2}\right. \\&\quad \left. +\, 648\,i{a}^{5}{\alpha }^{2}\eta \alpha _{{2}}+648\,i{a}^{5}{\alpha }^{2}\eta \alpha _{{3}}\tau \right. \\&\quad \left. +\, 1080\,{a}^{3}{\alpha }^{3}\alpha _{{2}}+1620\,{a}^{4}{\alpha }^{2}\alpha _{{2}}\right. \\&\quad \left. -\, 324\,{a}^{5}\alpha \,\alpha _{{2}}-144\,{\alpha }^{8}\sqrt{3}\alpha _{{1}}+{\alpha }^{4}\sqrt{3}\alpha _{{3}}\right. \\&\quad \left. +\, 54\,i{a}^{4}{\alpha }^{2}\alpha _{{3}}{\eta }^{2}+2592\,i{\alpha }^{7}a\tau \alpha _{{2}}\right. \\&\quad \left. +\, 72\,i{\alpha }^{7}\eta \alpha _{{3}}\tau +6480\,i{\alpha }^{6}{a}^{2}\tau \alpha _{{2}}\right. \\&\quad \left. +\, 360\,i{\alpha }^{6}a\eta \alpha _{{2}}+360\,i{\alpha }^{6}a\eta \alpha _{{3}}\tau \right. \\&\quad \left. -\, 25920\,i{\alpha }^{5}{a}^{3}\tau \alpha _{{2}}-12960\,i{\alpha }^{5}{a}^{3}\alpha _{{3}}{\tau }^{2}\right. \\&\quad \left. -\, 2160\,i{\alpha }^{5}\eta {a}^{2}\alpha _{{2}}-2160\,i{\alpha }^{5}\eta {a}^{2}\alpha _{{3}}t\right. \\&\quad \left. -\, 72\,i{\alpha }^{5}a\alpha _{{3}}{\eta }^{2}-19440\,i{\alpha }^{4}{a}^{4}\tau \alpha _{{2}}\right. \\&\quad \left. -\, 9720\,i{\alpha }^{4}{a}^{4}\alpha _{{3}}{\tau }^{2}-2160\,i{\alpha }^{4}\eta {a}^{3}\alpha _{{2}}\right. \\&\quad \left. -\, 2160\,i{\alpha }^{4}\eta {a}^{3}\alpha _{{3}}\tau +648\,{\alpha }^{2}\sqrt{3}{a}^{5}\eta \alpha _{{2}}\right. \\&\quad \left. +\, 54\,{\alpha }^{2}\sqrt{3}{a}^{4}\alpha _{{3}}{\eta }^{2}-12\,i{\alpha }^{6}\sqrt{3}\alpha _{{2}}\right. \\&\quad \left. -\, 72\,i{\alpha }^{8}\alpha _{{3}}{\tau }^{2}-144\,i{\alpha }^{8}\tau \alpha _{{2}}\right. \\&\quad \left. +\, 9\,i{a}^{3}\alpha \,\alpha _{{3}}+2592\,i{\alpha }^{7}a\alpha _{{1}}+72\,i{\alpha }^{7}\eta \alpha _{{2}}\right. \\&\quad \left. +\, 6480\,i{\alpha }^{6}{a}^{2}\alpha _{{1}}+6\,i{\alpha }^{6}\alpha _{{3}}{\eta }^{2}-25920\,i{\alpha }^{5}{a}^{3}\alpha _{{1}}\right. \\&\quad \left. -\,19440\,i{\alpha }^{4}{a}^{4}\alpha _{{1}}+23328\,i{a}^{5}{\alpha }^{3}\alpha _{{1}}-9\,ia{\alpha }^{3}\alpha _{{3}}\right. \\&\quad \left. +\,3888\,i{a}^{6}{\alpha }^{2}\alpha _{{1}}\!-\!135i{a}^{2}{\alpha }^{2}\alpha _{{3}}\!+\!9\,i{\alpha }^{4}\alpha _{{3}}\!-\!144\,i{\alpha }^{8}\alpha _{{1}}\right. \\&\quad \left. -\,54\,{a}^{4}\alpha \,\alpha _{{3}}\eta +3888\,{\alpha }^{2}\sqrt{3}{a}^{6}\alpha _{{1}}-9\,{\alpha }^{2}\sqrt{3}{a}^{2}\alpha _{{3}}\right. \\&\quad \left. -\,81\,\alpha \,\sqrt{3}{a}^{3}\alpha _{{3}}-72\,{\alpha }^{8}\sqrt{3}\alpha _{{3}}{\tau }^{2}-144\,{\alpha }^{8}\sqrt{3}\tau \alpha _{{2}}\right. \\&\quad \left. -\,864\,{\alpha }^{7}\sqrt{3}a\alpha _{{1}}-24\,{\alpha }^{7}\sqrt{3}\eta \alpha _{{2}}+6480\,{\alpha }^{6}\sqrt{3}{a}^{2}\alpha _{{1}}\right. \\&\quad \left. +\,6{\alpha }^{6}\sqrt{3}\alpha _{{3}}{\eta }^{2}\!+\!8640\,{\alpha }^{5}\sqrt{3}{a}^{3}\alpha _{{1}}\!-\!19440\,{\alpha }^{4}\sqrt{3}{a}^{4}\alpha _{{1}}\right. \\&\quad \left. -\,7776\,{\alpha }^{3}\sqrt{3}{a}^{5}\alpha _{{1}}+33\,{\alpha }^{3}\sqrt{3}a\alpha _{{3}}+54\,i{a}^{4}\alpha _{{3}}\right. \\&\quad \left. -\,432\,{\alpha }^{7}\sqrt{3}a\alpha _{{3}}{t}^{2}-24\,{\alpha }^{7}\sqrt{3}\eta \alpha _{{3}}\tau -180\,{\alpha }^{5}a\alpha _{{3}}\tau \right. \end{aligned}$$
$$\begin{aligned}&\quad \left. +\,360\,i{\alpha }^{4}\sqrt{3}{a}^{2}\alpha _{{3}}\tau -108\,i{\alpha }^{4}{a}^{2}\alpha _{{3}}{\eta }^{2}\right. \\&\quad \left. -\,90\,i{\alpha }^{2}\sqrt{3}{a}^{3}\alpha _{{3}}\eta -180\,i{\alpha }^{5}\sqrt{3}a\alpha _{{2}}\right. \\&\quad \left. -\,8\,i{\alpha }^{5}\sqrt{3}\alpha _{{3}}\eta +360\,i{\alpha }^{4}\sqrt{3}{a}^{2}\alpha _{{2}}\right. \\&\quad \left. +\,1080\,i{\alpha }^{3}\sqrt{3}{a}^{3}\alpha _{{2}}-180\,i{\alpha }^{5}\sqrt{3}a\alpha _{{3}}\tau \right. \\&\quad \left. +\,42\,i{\alpha }^{4}\sqrt{3}\alpha _{{3}}a\eta +1080\,i{\alpha }^{3}\sqrt{3}{a}^{3}\alpha _{{3}}\tau \right. \\&\quad \left. +\,126\,i{\alpha }^{3}\sqrt{3}{a}^{2}\alpha _{{3}}\eta -540\,i{\alpha }^{2}\sqrt{3}{a}^{4}\alpha _{{2}}\right. \\&\quad \left. -\,324\,i\alpha \,\sqrt{3}{a}^{5}\alpha _{{3}}\tau -54\,i\alpha \,\sqrt{3}{a}^{4}\alpha _{{3}}\eta \right. \\&\quad \left. +\,3240\,i{\alpha }^{6}{a}^{2}\alpha _{{3}}{\tau }^{2}+1296\,i{\alpha }^{7}a\alpha _{{3}}{\tau }^{2}\right. \\&\quad \left. -\,180\,{\alpha }^{5}a\alpha _{{2}}-12\,{\alpha }^{5}\alpha _{{3}}\eta \right. \\&\quad \left. +\,36\,{\alpha }^{6}\alpha _{{3}}\tau +36\,{\alpha }^{6}\alpha _{{2}}+360\,{\alpha }^{6}\sqrt{3}a\eta \alpha _{{3}}\tau \right. \\&\quad \left. +\,4320\,{\alpha }^{5}\sqrt{3}{a}^{3}\alpha _{{3}}{\tau }^{2}+8640\,{\alpha }^{5}\sqrt{3}{a}^{3}\tau \alpha _{{2}}\right. \\&\quad \left. +\,720\,{\alpha }^{5}\sqrt{3}\eta {a}^{2}\alpha _{{2}}+24\,{\alpha }^{5}\sqrt{3}a\alpha _{{3}}{\eta }^{2}\right. \\&\quad \left. -\,9720\,{\alpha }^{4}\sqrt{3}{a}^{4}\alpha _{{3}}{\tau }^{2}-19440\,{\alpha }^{4}\sqrt{3}{a}^{4}\tau \alpha _{{2}}\right. \\&\quad \left. -\,2160\,{\alpha }^{4}\sqrt{3}\eta {a}^{3}\alpha _{{2}}-12\,i{\alpha }^{6}\sqrt{3}\alpha _{{3}}\tau \right. \\&\quad \left. -\,1080\,{\alpha }^{4}{a}^{2}\alpha _{{3}}\tau -90\,{\alpha }^{4}\alpha _{{3}}a\eta +1080\,{a}^{3}{\alpha }^{3}\alpha _{{3}}\tau \right. \\&\quad \left. +\,162\,{a}^{2}{\alpha }^{3}\alpha _{{3}}\eta +1620\,{a}^{4}{\alpha }^{2}\alpha _{{3}}\tau +234\,{a}^{3}{\alpha }^{2}\alpha _{{3}}\eta \right. \\&\quad \left. -\,324\,{a}^{5}\alpha \,\alpha _{{3}}\tau -1080\,{\alpha }^{4}{a}^{2}\alpha _{{2}} \right) , \end{aligned}$$

and \(\alpha _{{1 }}, \alpha _{{2}}, \alpha _{{3 }}\) are arbitrary constants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, F. Matter rogue waves and management by external potentials for coupled Gross–Pitaevskii equation. Nonlinear Dyn 80, 685–699 (2015). https://doi.org/10.1007/s11071-015-1898-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1898-3

Keywords

Navigation