Skip to main content
Log in

Generalization of approximate partial Noether approach in phase space

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The approximate partial Noether theorem proposed earlier for the ordinary differential equations (ODEs) (Naeem and Mahomed in Nonlinear Dyn 57(1–2):303–311, 2009) is generalized in phase space for the perturbed Hamiltonian-type systems. The notion of approximate partial Hamiltonian is developed. An approximate partial Hamiltonian gives rise to an approximate Hamiltonian-type perturbed dynamical system of first-order ODEs. An approximate Legendre-type transformation connects the approximate partial Lagrangian and what we term as approximate partial Hamiltonian. The formulas for approximate partial Hamiltonian operators determining equations and first integrals are provided explicitly. We have explained our approach with the help of simple illustrative example. Then, it is applied to establish the approximate first integrals, reductions and exact solutions of two perturbed cubically coupled Duffing–Van der Pol oscillators. Both resonant and nonresonant cases are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Olver, P.J.: Applications of Lie Group to Differential Equations. Berlin (1986)

  2. Noether, E.: Invariante Variationsprobleme. Nachr. König. Gesell. Wissen., Göttingen, Math.-Phys. Kl., Heft 2, 235–257 (1918). (English translation in Transport Theory and Statistical Physics 1(3) 1971 186–207.)

  3. Baikov, V.A., Gazizov, R.K., Ibragimov, N.H.: Approximate symmetries. Math. Sbornik, 136 (178), No. 3: 435450, 1988. English transl. Math. USSR Sb 64, 427–441 (1989)

  4. Baikov, V.A., Gazizov, R.K., Ibragimov, N.K.: Perturbation methods in group analysis. J. Soviet. Math. 55(1), 1450–1490 (1991)

    Article  MATH  Google Scholar 

  5. Baikov, V.A., Gazizov, R.K., Ibragimov, N.H., Mahomed, F.M.: Closed orbits and their stable symmetries. J. Math. Phys. 35(12), 6525–6535 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Govinder, K.S., Heil, T.G., Uzer, T.: Approximate Noether symmetries. Phys. Lett. A. 240(3), 127–131 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feroze, T., Kara, A.H.: Group theoretic methods for approximate invariants and Lagrangians for some classes of \(y^{\prime \prime }+\varepsilon F (t) y^{\prime }+ y= f (y, y^{\prime })\). Int. J. Nonlinear Mech. 37(2), 275–280 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kara, A.H., Mahomed, F.M., Naeem, I., Wafo Soh, C.: Partial Noether operators and first integrals via partial Lagrangians. Math. Method. Appl. Sci. 30(16), 2079–2089 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Naeem, I., Mahomed, F.M.: Approximate partial Noether operators and first integrals for coupled nonlinear oscillators. Nonlinear Dyn. 57(1–2), 303–311 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Naeem, I., Mahomed, F.M.: Approximate first integrals for a system of two coupled van der Pol oscillators with linear diffusive coupling. Math. Comput. Appl. 15(4), 720 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Naz, R.: Approximate partial Noether operators and first integrals for cubically coupled nonlinear Duffing oscillators subject to a periodically driven force. J. Math. Anal. Appl. 380(1), 289–298 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kara, A.H., Mahomed, F.M., Ünal, G.: Approximate symmetries and conservation laws with applications. Int. J. Theor. Phys. 38(9), 2389–2399 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Johnpillai, A.G., Kara, A.H.: Variational formulation of approximate symmetries and conservation laws. Int. J. Theor. Phys. 40(8), 1501–1509 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gan, Y., Qu, C.: Approximate conservation laws of perturbed partial differential equations. Nonlinear Dyn. 61(1–2), 217–228 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Johnpillai, A.G., Kara, A.H., Mahomed, F.M.: Approximate Noether-type symmetries and conservation laws via partial Lagrangians for PDEs with a small parameter. J. Comput. Appl. Math. 223(1), 508–518 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kara, A.H., Mahomed, F.M.: Noether-type symmetries and conservation laws via partial Lagrangians. Nonlinear Dyn. 45(3–4), 367–383 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Naz, R., Mahomed, F.M., Mason, D.P.: Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics. Appl. Math. Comput. 205(1), 212–230 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Naz, R., Freire, I.L., Naeem, I.: Comparison of Different Approaches to Construct First Integrals for Ordinary Differential Equations. Abstr. Appl. Anal. (2014). doi:10.1155/2014/978636

  19. Wang, P.: Perturbation to symmetry and adiabatic invariants of discrete nonholonomic nonconservative mechanical system. Nonlinear Dyn. 68, 53–62 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. de Lagrange, J.L.: Méchanique analitique. Paris: Desaint 512 p.; in 8.; DCC. 4.403, 1 (1788)

  21. Euler, L.: Discovery of a new principle of mechanics. Mémoires de lAcademie Royale des science (1750)

  22. Pontryagin, L.S.: Mathematical Theory of Optimal Processes. CRC Press, Boca Raton (1987)

    MATH  Google Scholar 

  23. Legendre, A.M.: Réflexions sur differéntes manières de démostrer la théorie des paralléles ou le théorème sur la somme des trois angles du triangle. Mém. del Acad. des Sci. de Paris 13, 213–220 (1833)

    Google Scholar 

  24. Arnol’d, V.I.: Mathematical methods of classical mechanics. Springer, New York Mémoires de lAcademie des Sciences de Paris 13, 213–220 (1989)

  25. Dorodnitsyn, V., Kozlov, R.: Invariance and first integrals of continuous and discrete Hamiltonian equations. J. Eng. Math. 66, 253–270 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Naz, R., Mahomed, F.M., Chaudhry, A.: A partial Lagrangian method for dynamical systems. Nonlinear Dyn. (2016). doi:10.1007/s11071-016-2605-8

  27. Naz, R., Mahomed, F.M., Chaudhry, A.: A partial Hamiltonian approach for current value Hamiltonian systems. Commun. Nonlinear Sci. Numer. Simul. 19(10), 3600–3610 (2014)

    Article  MathSciNet  Google Scholar 

  28. Naz, R., Chaudhry, A., Mahomed, F.M.: Closed-form solutions for the Lucas Uzawa model of economic growth via the partial Hamiltonian approach. Commun. Nonlinear Sci. Numer. Simul. 30(1), 299–306 (2016)

    Article  MathSciNet  Google Scholar 

  29. Ünal, G.: Approximate generalized symmetries, normal forms and approximate first integrals. Phys. Lett. A. 269(1), 13–30 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ünal, G.: Approximate first integrals of weakly nonlinear, damped-driven oscillators with one degree of freedom. Nonlinear Dyn. 26(4), 309–329 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ünal, G., Gorali, G.: Approximate first integrals of a galaxy model. Nonlinear Dyn. 28(2), 195–211 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rajasekar, S., Murali, K.: Resonance behaviour and jump phenomenon in a two coupled Duffing–Van der Pol oscillators. Chaos Solitons. Frac. 19(4), 925–934 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Naz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naz, R., Naeem, I. Generalization of approximate partial Noether approach in phase space. Nonlinear Dyn 88, 735–748 (2017). https://doi.org/10.1007/s11071-016-3273-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3273-4

Keywords

Navigation