Skip to main content
Log in

A new control method integrated into the coupled map car-following model for suppressing traffic jams

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the light of Konishi et al.’s car-following model, considering safe headway effect of the two preceding cars on the following one, a novel feedback control scheme in the discrete car-following model is proposed. The stability condition is analysed under which the traffic system is steady running. When our scheme is applied to the discrete car-following model, the stability region could be enlarged effectively. Through simulation, we can obtain the result that our model exhibits a better effect that suppresses traffic jams compared with previous congestion control methods, and simulation outcomes are consistent with the theoretical derivation results. Because of considering information factor of multi-preceding vehicles, our controller is useful for investigation of intelligent transportation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rept. 329(4–6), 199–329 (2000)

    Article  MathSciNet  Google Scholar 

  2. Naito, Y., Nagatani, T.: Effect of headway and velocity on safety-collision transition induced by lane changing in traffic flow. Physica A. 391(4), 1626–1635 (2012)

    Article  Google Scholar 

  3. Tang, T.Q., Wang, Y.P., Yang, X.B., Wu, Y.H.: A new car-following model accounting for varying road condition. Nonlinear Dyn. 70(2), 1397–1405 (2014)

    Article  MathSciNet  Google Scholar 

  4. Nagatani, T., Tobita, K.: Vehicular motion in counter traffic flow through a series of signals controlled by a phase shift. Physica A. 391(20), 4976–4985 (2012)

    Article  MATH  Google Scholar 

  5. Jin, S., Wang, D.H., Tao, P.F., Li, P.F.: Non-lane-based full velocity difference car following model. Physica A. 389(21), 4654–4662 (2010)

    Article  Google Scholar 

  6. Yukawa, S., Kikuchi, M.: Coupled-Map modeling of one-dimensional traffic flow. J. Phys. Soc. Jpn. 64(1), 35–38 (1995)

    Article  Google Scholar 

  7. David, J.L., Paul, S.A.: A nonlinear temporal headway model of traffic dynamics. Nonlinear Dyn. 16(2), 127–151 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Treiber, M., Kesting, A., Helbing, D.: Delays, inaccuracies, and anticipation in microscopic traffic models. Physica A. 360, 71–88 (2006)

    Article  Google Scholar 

  9. Tang, T.Q., Li, C.Y., Huang, H.J.: A new car-following model with the consideration of the driver’s forecast effect. Phys. Lett. A 374(38), 1668–1672 (2010)

    Article  MATH  Google Scholar 

  10. Tang, T.Q., Huang, H.J., Shang, H.Y.: Influences of the driver’s bounded rationality on micro driving behavior, fuel consumption and emissions. Trans. Res. Part D 41, 423–432 (2015)

    Article  Google Scholar 

  11. Bando, M., Hasebe, K., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51(2), 1035–1042 (1995)

    Article  Google Scholar 

  12. Jiang, R., Wu, Q.S., Zhu, Z.J.: A new continuum model for traffic flow and numerical tests. Transp. Res. Part B., Methodol 36(5), 405–419 (2002).

  13. Xu, N., Shang, P., Kamae, S.: Modeling traffic flow correlation using DFA and DCCA. Nonlinear Dyn. 61(1), 207–216 (2010)

    Article  MATH  Google Scholar 

  14. Tadaki, S., Kikuchi, M., Sugiyama, Y., Yukawa, S.: Coupled map traffic flow simulator based on optimal velocity functions. J. Phys. Soc. Jpn. 67(7), 2270–2276 (1998)

    Article  Google Scholar 

  15. Yu, S.W., Shi, Z.K.: An improved car-following model considering relative velocity fluctuation. Commun. Nonlinear. Sci. Numer. Simul 36, 319–326 (2015)

    Article  Google Scholar 

  16. Ngoduy, D.: Generalized macroscopic traffic model with time delay. Nonlinear Dyn. 77(1–2), 289–296 (2014)

    Article  MathSciNet  Google Scholar 

  17. Zhou, J., Shi, Z.K., Cao, J.L.: An extended traffic flow model on a gradient highway with the consideration of the relative velocity. Nonlinear Dyn. 78(3), 1765–1779 (2014)

    Article  Google Scholar 

  18. Zhou, J.: An extended visual angle model for car-following theory. Nonlinear Dyn. 81(1), 549–560 (2015)

    Article  Google Scholar 

  19. Zhou, J., Shi, Z.K., Cao, J.L.: Nonlinear analysis of the optimal velocity difference model with reaction-time delay. Physica A 396, 77–87 (2014)

    Article  MathSciNet  Google Scholar 

  20. Yu, S.W., Liu, Q.L., Li, X.H.: Full velocity difference and acceleration model for a car-following theory. Commun. Nonlinear. Sci. Numer. Simul. 18, 1229–1234 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, Y.F., Sun, D.H., Liu, W.N., Zhang, M., Zhao, M., Liao, X.Y., Tang, L.: Modeling and simulation for microscopic traffic flow based on multiple headway, velocity and acceleration difference. Nonlinear Dyn. 66(1–2), 15–28 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tang, T.Q., Shi, W.F., Shang, H.Y., Wang, Y.P.: A new car-following model with consideration of inter-vehicle communication. Nonlinear Dyn. 76, 2017–2023 (2014)

    Article  Google Scholar 

  23. Machado, J.A.T., Figueiredo, L.: Special issue on modelling and control of intelligent transportation systems (ITS). Nonlinear Dyn. 49(4), 443–444 (2007)

    Article  Google Scholar 

  24. Konishi, K., Kokame, H., Hirata, K.: Coupled map car-following model and its delayed-feedback control. Phys. Rev. E 60(4), 4000–4007 (1999)

    Article  Google Scholar 

  25. Zhao, X.M., Gao, Z.Y.: A control method for congested traffic induced by bottlenecks in the coupled map car-following model. Physica A 366(1), 513–522 (2006)

    Article  Google Scholar 

  26. Han, X.L., Jiang, C.Y., Ge, H.X., Dai, S.Q.: A modified coupled map car-following model based on application of intelligent transportation system and control of traffic congestion. Acta. Phys. Sin. 56(8), 4383–4392 (2007)

    Google Scholar 

  27. Ge, H.X., Liu, Y.X., Cheng, R.J., Lo, S.M.: A modified coupled map car following model and its traffic congestion analysis. Commun. Nonlinear Sci. Numer. Simulat. 17(11), 4439–4445 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ge, H.X.: Modified coupled map car-following model and its delayed feedback control scheme. Chin. Phy. B 20(9), 69–76 (2011)

    Google Scholar 

  29. Yu, H.M., Cheng, R.J., Ge, H.X.: Considering Backward effect in coupled map car-following model. Commun. Theor. Phys. 54(1), 117–122 (2010)

    Article  MATH  Google Scholar 

  30. Ge, H.X.: Modified coupled map car-following model and its delayed feedback control scheme. Chin. Phys. B 20(9), 090502.1–090502.8 (2011)

    Article  Google Scholar 

  31. Cheng, R.J., Han, X.L., Lo, S.M., Ge, H.X.: A control method applied to mixed traffic flow for the coupled-map car-following model. Chin. Phys. B 23(3), 030507.1–030507.8 (2014)

    Google Scholar 

  32. Herman, R., Montroll, E.W., Potts, R.B., Rothery, R.W.: Traffic dynamics: analysis of stability in car following. Oper. Res. 7(1), 86–106 (1959)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation (2014T70852 and 2015M572450), Fundamental Research Funds for the Central Universities (106112014CDJZR188801), Chongqing Postdoctoral Science Foundation Project (Xm201305 and Xm2015056), Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJ1503301), and Natural Science Foundation of Chongqing (cstc2016jcyjA0565) and the Key application projects of Chongqing(cstc2014yykf B30003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linjiang Zheng.

Appendix

Appendix

Firstly, according to the Jury’ stability criterion, \(\bar{{P}}_i (z)\) is stable if

$$\begin{aligned} \left\{ {\begin{array}{l} 1+a_i +b_i>0 \\ 1-b_i>0 \\ 1-a_i +b_i >0 \\ \end{array}} \right. , \end{aligned}$$
(34)

We can get

$$\begin{aligned}&\frac{-2.3+2\alpha _i T-\alpha _i r_i T^{2}}{T}<k<\frac{0.85+\alpha _i T-\alpha _i r_i T^{2}}{T}, \nonumber \\&2>\alpha _i r_i T^{2}>0, \end{aligned}$$
(35)

There is the value of feedback gain k in Eq. (2), if the following condition is satisfied:

$$\begin{aligned} \frac{-2.3+2\alpha _i T-\alpha _i r_i T^{2}}{T}<\frac{0.85+\alpha _i T-\alpha _i r_i T^{2}}{T}, \end{aligned}$$
(36)

That is,

$$\begin{aligned} \alpha _i T<3, \end{aligned}$$
(37)

Therefore, the first condition for the feedback gain k for \(P_i (z)\) is given as

$$\begin{aligned}&\frac{-2.3+2\alpha _i T-\alpha _i r_i T^{2}}{T}<\frac{0.85+\alpha _i T-\alpha _i r_i T^{2}}{T} \nonumber \\&0<\alpha _i T<3 \end{aligned}$$
(38)

Secondly, consider \({\Vert {G_i (z)} \Vert }_\infty \le 1\), that is

$$\begin{aligned} \left\| {G_i (z)} \right\| _\infty= & {} \mathop {\max }\limits _{\hbox {|}z\hbox {|=}1} \left| {\frac{(0.85(z-1)+\alpha _i r_i T^{2}+kT(z-1)(1-k)}{P_i (z)}} \right| \nonumber \\\le & {} 1, \end{aligned}$$
(39)

Equation (6) is stable if the following equation is fulfilled.

Let \(z=\cos \theta +i\sin \theta \), Eq. (33) can be written as

$$\begin{aligned}&2(1-\cos \theta )[0.85+kT(1-k)]^{2}\nonumber \\&\quad -2(1-\cos \theta )[0.85+kT(1-k)]\alpha _i r_i T^{2} \nonumber \\&\quad +(\alpha _i r_i T^{2})^{2}\le 4b_i \cos ^{2}\theta \nonumber \\&\quad +2a_i (1+b_i )\cos \theta +a_i^2 +(1+b_i )^{2}, \end{aligned}$$
(40)

Eq. (7) can be reduced to

$$\begin{aligned}&2(1-\cos \theta )[(1.15-\alpha _i T)\nonumber \\&\quad -(0.15-\alpha _i T+kT+\alpha _i r_i T^{2})(2\cos \theta \nonumber \\&\quad +\alpha _i T+0.85)-kT(1-k)((1-k)-\alpha _i r_i T^{2})]\ge 0,\nonumber \\ \end{aligned}$$
(41)

Since \(1-\cos \theta \ge 0\) for arbitrary \(\theta \).

We consider

$$\begin{aligned}&(1.15-\alpha _i T)-(0.15-\alpha _i T+kT+\alpha _i r_i T^{2})\nonumber \\&\quad (2\cos \theta +\alpha _i T+0.85) \nonumber \\&\quad -kT(1-k)((1-k)-\alpha _i r_i T^{2}), \end{aligned}$$
(42)

As \(1-\left| {\cos \theta } \right| <0\), Eq.(9) can be described as

$$\begin{aligned}&(\mathrm{a})\, (1.15-\alpha _i T)-(0.15-\alpha _i T+kT+\alpha _i r_i T^{2})\\&\quad (\alpha _i T+2.85) \\&-kT(1-k)((1-k)-\alpha _i r_i T^{2})\ge 0 \\ \end{aligned}$$

If \(\;0.15-\alpha _i T+kT+\alpha _i r_i T^{2}>0\)

$$\begin{aligned}&(\mathrm{b}) \,(1.15-\alpha _i T)-(0.15-\alpha _i T+kT+\alpha _i r_i T^{2})\\&\quad (\alpha _i T-1.15) \\&-kT(1-k)((1-k)-\alpha _i r_i T^{2})\ge 0 \end{aligned}$$

If \(\;0.15-\alpha _i T+kT+\alpha _i r_i T^{2}<0\)

$$\begin{aligned} (\mathrm{c}) \begin{array}{l} (1.15-\alpha _i T)-kT(1-k)((1-k)-\alpha _i r_i T^{2})\ge 0 \end{array} \end{aligned}$$

If \(\;0.15-\alpha _i T+kT+\alpha _i r_i T^{2}=0\)

We can see that the above conditions (a)–(c) are equal to the conditions (i)–(iv) in Theorem 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Zhou, T., Liu, W. et al. A new control method integrated into the coupled map car-following model for suppressing traffic jams. Nonlinear Dyn 88, 663–671 (2017). https://doi.org/10.1007/s11071-016-3268-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3268-1

Keywords

Navigation