Skip to main content
Log in

Comparison of the dynamic performance of nonlinear one and two degree-of-freedom vibration isolators with quasi-zero stiffness

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nonlinear stiffness isolation mounts, which offer a high static stiffness alongside a low dynamic stiffness or even quasi-zero stiffness (QZS) over a displacement range, have been proposed. These vibration isolators offer a higher isolation frequency band of low transmissibility than conventional linear devices. Here, three kinds of nonlinear two degree-of-freedom (DOF) vibration isolators with QZS characteristic are analyzed in order to further improve the isolation performance. The dynamic response is obtained using the harmonic balance method, and the peak dynamic displacement is obtained using backbone curve analysis and energy balancing method. The optimum isolation performance of the nonlinear 2DOF vibration isolators is evaluated for four performance indexes and compared with three baseline vibration isolators. These are a linear and a QZS 1DOF vibration isolator as well as a linear 2DOF vibration isolator. To ensure a fair comparison, the static displacement of each vibration isolator is kept constant. The comparison demonstrates that a nonlinear 2DOF vibration isolator can be tuned to achieve a better isolation performance in the higher isolation frequency band than the baseline vibration isolators, while retaining a moderate peak dynamic displacement and peak transmissibility. In addition, the best vibration isolator is identified for each of the four performance indexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Harris, C.M., Piersol, A.G.: Shock and Vibration Handbook. McGraw-Hill, New York (2002)

    Google Scholar 

  2. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3–5), 371–452 (2008)

    Article  Google Scholar 

  3. Alabuzhev, P., Gritchin, A., Kim, L., Migirenko, G., Chon, V., Stepanov, P.: Vibration Protecting and Measuring System with Quasi-Zero Stiffness. Hemisphere Publishing, New York (1989)

    Google Scholar 

  4. Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3–5), 678–689 (2007)

    Article  Google Scholar 

  5. Carrella, A., Brennan, M.J., Waters, T.P., Lopes Jr., V.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic stiffness. Int. J. Mech. Sci. 55(1), 22–29 (2012)

    Article  Google Scholar 

  6. Xu, D., Zhang, Y., Zhou, J., Lou, J.: On the analytical and experimental assessment of performance of a quasi-zero-stiffness isolator. J. Vib. Control (2013). doi:10.1177/1077546313484049

  7. Le, T.D., Ahn, K.K.: A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. J. Sound Vib. 330(26), 6311–6335 (2011)

    Article  Google Scholar 

  8. Le, T.D., Ahn, K.K.: Experimental investigation of a vibration isolation system using negative stiffness structure. Int. J. Mech. Sci. 70, 99–112 (2013)

    Article  Google Scholar 

  9. Le, T.D., Ahn, K.K.: Fuzzy sliding mode controller of a pneumatic active isolating system using negative stiffness structure. J. Mech. Sci. Technol. 26(12), 3873–3884 (2012)

    Article  Google Scholar 

  10. Platus, D.L.: Negative-stiffness-mechanism vibration isolation systems. In: Proceedings of SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, pp. 98–105. (1999)

  11. Yang, J., Xiong, Y., Xing, J.: Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism. J. Sound Vib. 332(1), 167–183 (2013)

    Article  Google Scholar 

  12. Liu, X., Huang, X., Hua, H.: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. J. Sound Vib. 332(14), 3359–3376 (2013)

    Article  Google Scholar 

  13. Huang, X., Liu, X., Sun, J., Zhang, Z., Hua, H.: Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study. J. Sound Vib. 333(4), 1132–1148 (2014)

    Article  Google Scholar 

  14. Shaw, A.D., Neild, S.A., Wagg, D.J.: Dynamic analysis of high static low dynamic stiffness vibration isolation mounts. J. Sound Vib. 332(6), 1437–1455 (2013)

    Article  Google Scholar 

  15. Shaw, A.D., Neild, S.A., Wagg, D.J., Weaver, P.M., Carrella, A.: A nonlinear spring mechanism incorporating a bistable composite plate for vibration isolation. J. Sound Vib. 332(24), 6265–6275 (2013)

    Article  Google Scholar 

  16. Lan, C.C., Yang, S.A., Wu, Y.S.: Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads. J. Sound Vib. 333(20), 4843–4858 (2014)

    Article  Google Scholar 

  17. Zhou, J., Xu, D., Bishop, S.: A torsion quasi-zero stiffness vibration isolator. J. Sound Vib. 338, 121–133 (2015)

    Article  Google Scholar 

  18. Zhou, J., Wang, X., Xu, D., Bishop, S.: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms. J. Sound Vib. 346, 53–69 (2015)

    Article  Google Scholar 

  19. Liu, C., Jing, X.: Vibration energy harvesting with a nonlinear structure. Nonlinear Dyn. (2016). doi:10.1007/s11071-016-2630-7

  20. Robertson, W.S., Kidner, M.R.F., Cazzolato, B.S., Zander, A.C.: Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation. J. Sound Vib. 326(1–2), 88–103 (2009)

    Article  Google Scholar 

  21. Zhou, N., Liu, K.: A tunable high-static low-dynamic stiffness vibration isolator. J. Sound Vib. 329(9), 1254–1273 (2010)

    Article  Google Scholar 

  22. Xu, D., Yu, Q., Zhou, J., Bishop, S.: Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 332(14), 3377–3389 (2013)

    Article  Google Scholar 

  23. Huang, X., Liu, X., Sun, J., Zhang, Z., Hua, H.: Effect of the system imperfections on the dynamic response of a high-static-low-dynamic stiffness vibration isolator. Nonlinear Dyn. 76(2), 1157–1167 (2014)

    Article  MathSciNet  Google Scholar 

  24. Huang, X., Liu, X., Hua, H.: Effects of stiffness and load imperfection on the isolation performance of a high-static-low-dynamic-stiffness non-linear isolator under base displacement excitation. Int. J. Nonlinear Mech. 65, 32–43 (2014)

    Article  Google Scholar 

  25. Shaw, A.D., Neild, S.A., Friswell, M.I.: Relieving the effect of static load errors in nonlinear vibration isolation mounts through stiffness asymmetries. J. Sound Vib. 339, 84–98 (2015)

    Article  Google Scholar 

  26. Abolfathi, A., Brennan, M.J., Waters, T.P., Tang, B.: On the effects of mistuning a force-excited system containing a quasi-zero-stiffness vibration isolator. J. Vib. Acoust. 137(4), 044502 (2015)

    Article  Google Scholar 

  27. Gorman, R.M.: Design and advantage of a two-stage mounting system for major machine in ships’ engine room. Shock. Vib. Bull. 35 (1966)

  28. Wang, Y., Chen, C.G., Hua, H.X., Shen, R.Y.: Optimal design of ship floating raft system power equipment. Shipbuild. China 42(1), 45–49 (2001)

    Google Scholar 

  29. Lu, Z., Brennan, M.J., Yang, T., Li, X., Liu, Z.: An investigation of a two-stage nonlinear vibration isolation system. J. Sound Vib. 332(3), 1456–1464 (2013)

    Article  Google Scholar 

  30. Lu, Z., Yang, T., Brennan, M.J., Li, X., Liu, Z.: On the performance of a two-stage vibration isolation system which has geometrically nonlinear stiffness. J. Vib. Acoust. 136(6), 064501 (2014)

    Article  Google Scholar 

  31. Wagg, D.J., Neild, S.A.: Nonlinear Vibration with Control. Springer, New York (2009)

    MATH  Google Scholar 

  32. Hill, T.L., Cammarano, A., Neild, S.A., Wagg, D.J.: An analytical method for the optimisation of weakly nonlinear systems. Proceedings of EURODYN, pp. 1981–1988. (2014)

  33. Hill, T.L., Cammarano, A., Neild, S.A., Wagg, D.J.: Interpreting the forced responses of a two-degree-of-freedom nonlinear oscillator using backbone curves. J. Sound Vib. 349, 276–288 (2015)

    Article  Google Scholar 

  34. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.C.: Nonlinear normal modes, part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The research described in this paper is supported by the Fundamental Research Funds for the Central Universities (Grant No. NZ2015103), the open project of State Key Laboratory for Strength and Vibration of Mechanical Structures (Grant No. SV2015-KF-01) and the National Natural Science Foundation of China (Grant No. 51675262). In addition, Yong Wang is supported as a visiting doctoral student at the University of Bristol by the Chinese Scholarship Council (Grant No. 201506830023) and Simon A. Neild is supported by the EPSRC Fellowship EP/K005375/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Appendix

Appendix

1.1 The GG Model

The dynamic equation of the GG Model under force excitation at the static equilibrium position is given by

$$\begin{aligned}&m_1 \ddot{x}+c_1 \left( {\dot{x}-\dot{x}_\mathrm{a} } \right) \nonumber \\&\quad \quad +\left( {k_\mathrm{v1} +2k_\mathrm{h1} \left( {1-\frac{l_0 }{\sqrt{l^{2}+x^{2}}}} \right) } \right) x-k_\mathrm{v1} x_\mathrm{a} \nonumber \\&\quad =f_\mathrm{e} \cos \left( {\omega t} \right) , \end{aligned}$$
(31a)
$$\begin{aligned}&m_\mathrm{a} \ddot{x}_\mathrm{a} -c_1 \dot{x}+\left( {c_1 +c_2 } \right) \dot{x}_\mathrm{a} -k_\mathrm{v1} x+k_\mathrm{v1} x_a \nonumber \\&\quad +\left( {k_\mathrm{v2} +2k_\mathrm{h2} \left( {1-\frac{l_0 }{\sqrt{l^{2}+x_\mathrm{a}^2 }}} \right) } \right) x_\mathrm{a} =0. \end{aligned}$$
(31b)

Using a Taylor series expansion, Eq. (31) can be approximated as

$$\begin{aligned}&m_1 \ddot{x}+c_1 \left( {\dot{x}-\dot{x}_\mathrm{a} } \right) +k_v \alpha _1 x+\frac{k_v \gamma _1 }{x_s^2 }x^{3}\nonumber \\&\quad -k_v vx_\mathrm{a} =f_\mathrm{e} \cos \left( {\omega t} \right) , \end{aligned}$$
(32a)
$$\begin{aligned}&m_\mathrm{a} \ddot{x}_\mathrm{a} -c_1 \dot{x}+\left( {c_1 +c_2 } \right) \dot{x}_\mathrm{a} -k_v vx \nonumber \\&\quad +k_v \left( {v+\alpha _2 } \right) x_a +\frac{k_v \gamma _2 }{x_\mathrm{s}^2 }x_\mathrm{a}^3 =0. \end{aligned}$$
(32b)

Following the same non-dimensional procedure described in Sect. 4, Eq. (32) can be written as

$$\begin{aligned} \begin{array}{l} \left[ {{\begin{array}{ll} 1&{} 0 \\ 0&{} \sigma \\ \end{array} }} \right] \left( {{\begin{array}{l} {{X}^{{\prime }{\prime }}} \\ {{X}^{{\prime }{\prime }}_\mathrm{a}} \\ \end{array} }} \right) +\left[ {{\begin{array}{ll} {2\zeta _1 }&{} {-2\zeta _1 } \\ {-2\zeta _1 }&{} {2\zeta _1 +2\sigma \zeta _2 } \\ \end{array} }} \right] \left( {{\begin{array}{l} {{X}^{\prime }} \\ {{X}^{\prime }_\mathrm{a} } \\ \end{array} }} \right) \\ \quad +\left[ {{\begin{array}{ll} {\alpha _1 }&{} {-v} \\ {-v}&{} {v+\alpha _2 } \\ \end{array} }} \right] \left( {{\begin{array}{l} X \\ {X_\mathrm{a} } \\ \end{array} }} \right) \\ \quad +\left[ {{\begin{array}{ll} {\gamma _1 }&{} 0 \\ 0&{} {\gamma _2 } \\ \end{array} }} \right] \left( {{\begin{array}{l} {X^{3}} \\ {X_\mathrm{a}^3 } \\ \end{array} }} \right) =\left( {{\begin{array}{l} {F_\mathrm{e} \cos \left( {\Omega T} \right) } \\ 0 \\ \end{array} }} \right) \\ \end{array}. \end{aligned}$$
(33)

The resulting amplitude–frequency relationships of the GG Model can be obtained

$$\begin{aligned} \left( {\mathbf{K}_1 -\Omega ^{2}{} \mathbf{M}} \right) \mathbf{X}{\varvec{\Phi }} -\Omega \left( {\mathbf{CX}{\varvec{\Phi }}} \right) \mathbf{A}+\frac{3}{4}{} \mathbf{K}_\mathbf{3} \mathbf{X}^{\left( 3 \right) }{\varvec{\Phi }} ={} \mathbf{F}_\mathbf{e} ,\nonumber \\ \end{aligned}$$
(34)

where \(\mathbf{K}_\mathbf{1} =\left[ {{\begin{array}{ll} {\alpha _1 }&{} {-v} \\ {-v}&{} {v+\alpha _2 } \\ \end{array} }} \right] \), \(\mathbf{K}_\mathbf{3} =\left[ {{\begin{array}{ll} {\gamma _1 }&{} 0 \\ 0&{} {\gamma _2 } \\ \end{array} }} \right] \), \(\mathbf{X}^{\left( \mathbf{3} \right) }=\left[ {{\begin{array}{ll} {X_\mathrm{m}^3 }&{} 0 \\ 0&{} {X_\mathrm{am}^3 } \\ \end{array} }} \right] \), and the other parameters in Eq. (34) are the same with the parameters shown in Sect. 4.

The transmitted force of the GG Model is given as

$$\begin{aligned} F_t= & {} 2\sigma \zeta _2 {X}'_\mathrm{a} +\left( {\alpha _1 -v} \right) X+\gamma _1 X^{3}+\alpha _2 X_\mathrm{a} +\gamma _2 X_\mathrm{a}^3 \nonumber \\= & {} \mathbf{C}_t \left( {\begin{array}{l} {X}^{\prime } \\ {X}^{\prime }_\mathrm{a} \\ \end{array}} \right) +\mathbf{K}_{\mathbf{t1}} \left( {\begin{array}{l} X \\ X_\mathrm{a} \\ \end{array}} \right) +\mathbf{K}_{\mathbf{t3}} \left( {\begin{array}{l} X^{3} \\ X_\mathrm{a}^3 \\ \end{array}} \right) \end{aligned}$$
(35)

where \(\mathbf{C}_\mathbf{t} =\left[ {{\begin{array}{ll} 0&{} {2\sigma \zeta _2 } \\ \end{array} }} \right] \), \(\mathbf{K}_{\mathbf{t1}} =\left[ {{\begin{array}{ll} {\alpha _1 -v}&{} {\alpha _2 } \\ \end{array} }} \right] \) and \(\mathbf{K}_{\mathbf{t3}} =\left[ {{\begin{array}{ll} {\gamma _1 }&{} {\gamma _2 } \\ \end{array} }} \right] \).

Using Eqs. (34) and (35), the amplitude of the force is written as

$$\begin{aligned} F_{t1} {\varvec{\Phi }}_\mathbf{t} =\mathbf{K}_{t1} \mathbf{X}{\varvec{\Phi }} +\frac{3}{4}{} \mathbf{K}_{t3} \mathbf{X}^{\left( 3 \right) }{\varvec{\Phi }} -\Omega \left( {\mathbf{C}_\mathbf{t} \mathbf{X}{\varvec{\Phi }} } \right) \mathbf{A}, \end{aligned}$$
(36)

where \({\varvec{\Phi }}_\mathbf{t} =\left[ {{\begin{array}{ll} {\cos \Phi _t }&{} {\sin \Phi _t } \\ \end{array} }} \right] \). The force transmissibility of the GG Model can be obtained

$$\begin{aligned} G_\mathrm{FN1} =\frac{F_{t1} }{F_\mathrm{e} }. \end{aligned}$$
(37)

Finally, using the backbone curve analysis and energy balancing method described in Sect. 4, the peak dynamic displacement of the GG Model can be determined from the following sets of equations

$$\begin{aligned} \left\{ {\begin{array}{l} \frac{3}{4}\gamma _1 X_\mathrm{m}^3 +\left( {\alpha _1 -\Omega ^{2}} \right) X_\mathrm{m} \mp vX_\mathrm{am} =0 \\ \frac{3}{4}\gamma _2 X_\mathrm{am}^3 +\left( {v+\alpha _2 -\sigma \Omega ^{2}} \right) X_\mathrm{am} \mp vX_\mathrm{m} =0 \\ \zeta _1 \Omega ^{2}X_\mathrm{m}^2 +\left( {\zeta _1 +\sigma \zeta _2 } \right) \\ \Omega ^{2}X_\mathrm{am}^2 \mp 2\zeta _1 \Omega ^{2}X_\mathrm{m} X_\mathrm{am} =\frac{\Omega X_\mathrm{m} F_\mathrm{e} }{2} \\ \end{array}} \right. . \end{aligned}$$
(38)

1.2 The TG Model

The dynamic equation of the TG Model under force excitation at the static equilibrium position is given by

$$\begin{aligned}&m\ddot{x}+c_1 \left( {\dot{x}-\dot{x}_\mathrm{a} } \right) \nonumber \\&\quad \quad +\left( {k_\mathrm{v1} +2k_\mathrm{h1} \left( {1-\frac{l_0 }{\sqrt{l^{2}+x^{2}}}} \right) } \right) x-k_\mathrm{v1} x_\mathrm{a} \nonumber \\&\quad \quad +2k_\mathrm{h2} \left( {1-\frac{l_0 }{\sqrt{l^{2}+\left( {x-x_\mathrm{a} } \right) ^{2}}}} \right) \left( {x-x_\mathrm{a} } \right) \nonumber \\&\quad =f_\mathrm{e} \cos \left( {\omega t} \right) \end{aligned}$$
(39a)
$$\begin{aligned}&m_\mathrm{a} \ddot{x}_\mathrm{a} -c_1 \dot{x}+\left( {c_1 +c_2 } \right) \dot{x}_\mathrm{a} +k_\mathrm{v1} \left( {x_\mathrm{a} -x} \right) +k_\mathrm{v2} x_\mathrm{a} \nonumber \\&\quad +2k_\mathrm{h2} \left( {1-\frac{l_0 }{\sqrt{l^{2}+\left( {x_\mathrm{a} -x} \right) ^{2}}}} \right) \left( {x_\mathrm{a} -x} \right) =0 ,\nonumber \\ \end{aligned}$$
(39b)

Using a Taylor series expansion, Eq. (39) can be approximated as

$$\begin{aligned}&m_1 \ddot{x}+c_1 \left( {\dot{x}-\dot{x}_\mathrm{a} } \right) +k_\mathrm{v} \left( {\alpha _1 +\alpha _2 -\beta } \right) \nonumber \\&\quad x-k_\mathrm{v }\left( {v+\alpha _2 -\beta } \right) x_\mathrm{a} \nonumber \\&\quad +\frac{k_\mathrm{v} \gamma _1 }{x_\mathrm{s}^2 }x^{3}+\frac{k_\mathrm{v} \gamma _2 }{x_\mathrm{s}^2 }\left( {x-x_\mathrm{a} } \right) ^{3}=f_\mathrm{e} \cos \left( {\omega t} \right) \end{aligned}$$
(40a)
$$\begin{aligned}&m_\mathrm{a} \ddot{x}_\mathrm{a} -c_1 \dot{x}+\left( {c_1 +c_2 } \right) \dot{x}_\mathrm{a} -k_\mathrm{v} \left( {v+\alpha _2 -\beta } \right) x \nonumber \\&\quad +k_\mathrm{v} \left( {v+\alpha _2 } \right) x_\mathrm{a }+\frac{k_\mathrm{v} \gamma _2 }{x_\mathrm{s}^2 }\left( {x_\mathrm{a} -x} \right) ^{3}=0 , \end{aligned}$$
(40b)

Following the same non-dimensional procedure described in Sect. 4, Eq. (40) can be written as

$$\begin{aligned}&\left[ {{\begin{array}{ll} 1&{} 0 \\ 0&{} \sigma \\ \end{array} }} \right] \left( {{\begin{array}{l} {{X}^{{\prime }{\prime }}} \\ {{X}^{{\prime }{\prime }}_\mathrm{a} } \\ \end{array} }} \right) +\left[ {{\begin{array}{ll} {2\zeta _1 }&{} {-2\zeta _1 } \\ {-2\zeta _1 }&{} {2\zeta _1 +2\sigma \zeta _2 } \\ \end{array} }} \right] \left( {{\begin{array}{l} {{X}^{\prime }} \\ {{X}^{\prime }_\mathrm{a} } \\ \end{array} }} \right) \nonumber \\&\quad +\left[ {{\begin{array}{ll} {\alpha _1 +\alpha _2 -\beta }&{} {-\left( {v+\alpha _2 -\beta } \right) } \\ {-\left( {v+\alpha _2 -\beta } \right) }&{} {v+\alpha _2 } \\ \end{array} }} \right] \left( {{\begin{array}{l} X \\ {X_\mathrm{a} } \\ \end{array} }} \right) \nonumber \\&\quad +\left[ {{\begin{array}{ll} {\gamma _1 }&{} {\gamma _2 } \\ 0&{} {-\gamma _2 } \\ \end{array} }} \right] \left( {{\begin{array}{l} {X^{3}} \\ {\left( {X-X_\mathrm{a} } \right) ^{3}} \\ \end{array} }} \right) =\left( {{\begin{array}{l} {F_\mathrm{e} \cos \left( {\Omega T} \right) } \\ 0 \\ \end{array} }} \right) .\nonumber \\ \end{aligned}$$
(41)

The resulting amplitude–frequency relationships of the TG Model can be obtained

$$\begin{aligned}&\left( {\mathbf{K}_1 -\Omega ^{2}{} \mathbf{M}} \right) \mathbf{X}{\varvec{\Phi }} -\Omega \left( {\mathbf{CX}{\varvec{\Phi }} } \right) \mathbf{A}+\frac{3}{4}{} \mathbf{K}_3 \mathbf{X}^{\left( {3-1} \right) }{\varvec{\Phi }}\nonumber \\&\quad +\frac{3}{4}{} \mathbf{K}_3 \mathbf{X}^{\left( {3-2} \right) }{\varvec{\Phi }} \mathbf{A}=\mathbf{F}_\mathbf{e} , \end{aligned}$$
(42)

where \(K_1 =\left[ {{\begin{array}{ll} {\alpha _1 +\alpha _2 -\beta }&{} {-\left( {v+\alpha _2 -\beta } \right) } \\ {-\left( {v+\alpha _2 -\beta } \right) }&{} {v+\alpha _2 } \\ \end{array} }} \right] \), \(K_3 =\left[ {{\begin{array}{ll } {\gamma _1 }&{} {\gamma _2 } \\ 0&{} {-\gamma _2 } \\ \end{array} }} \right] \),

$$\begin{aligned}&X^{\left( {3-1} \right) }\\&\quad =\left[ {{\begin{array}{ll} {X_\mathrm{m}^3 }&{} 0 \\ X_\mathrm{m}^3 +2X_\mathrm{m} X_\mathrm{am}^2 -X_\mathrm{m}^2\\ \quad X_\mathrm{am} \cos \left( {\Phi _1 -\Phi _2 } \right) &{} -X_\mathrm{am}^3 -2X_\mathrm{m}^2 X_\mathrm{am} +X_\mathrm{m} \\ {} &{} \quad X_\mathrm{am}^2 \cos \left( {\Phi _1 -\Phi _2 } \right) \end{array} }} \right] , \\&X^{\left( {3-2} \right) }{=}\left[ {{\begin{array}{ll} 0&{} 0 \\ {X_\mathrm{m}^2 X_\mathrm{am} \sin \left( {\Phi _1 {-}\Phi _2 } \right) }&{} {X_\mathrm{m} X_\mathrm{am}^2 \sin \left( {\Phi _1 {-}\Phi _2 } \right) } \\ \end{array} }} \right] , \end{aligned}$$

parameters defined in Sect. 4.

The transmitted force of the TG Model is given as

$$\begin{aligned} F_t= & {} 2\sigma \zeta _2 {X}'_\mathrm{a} +\left( {\alpha _1 -v} \right) X+\gamma _1 X^{3}+\beta X_\mathrm{a} \nonumber \\= & {} C_t \left( {\begin{array}{l} {X}^{\prime } \\ {X}^{\prime }_\mathrm{a} \\ \end{array}} \right) +K_{t1} \left( {\begin{array}{l} X \\ X_\mathrm{a} \\ \end{array}} \right) +K_{t3} \left( {\begin{array}{l} X^{3} \\ X_\mathrm{a}^3 \\ \end{array}} \right) \end{aligned}$$
(43)

where \(C_t =\left[ {{\begin{array}{ll} 0&{} {2\sigma \zeta _2 } \\ \end{array} }} \right] \), \(K_{t1} =\left[ {{\begin{array}{ll} {\alpha _1 -v}&{} \beta \\ \end{array} }} \right] \) and \(K_{t3} =\left[ {{\begin{array}{ll} {\gamma _1 }&{} 0 \\ \end{array} }} \right] \).

Using Eqs. (42) and (43), the amplitude of the force is written as

$$\begin{aligned} F_{t3} {\varvec{\Phi }}_\mathbf{t} =\mathbf{K}_{\mathbf{t1}} \mathbf{X}{\varvec{\Phi }} +\frac{3}{4}{} \mathbf{K}_{\mathbf{t3}} \mathbf{X}^{\left( \mathbf{3} \right) }{\varvec{\Phi }} -\Omega \left( {\mathbf{C}_\mathbf{t} \mathbf{X}{\varvec{\Phi }} } \right) \mathbf{A}. \end{aligned}$$
(44)

The force transmissibility of the TG Model can be obtained

$$\begin{aligned} G_\mathrm{NF3} =\frac{F_{t3} }{F_\mathrm{e} }. \end{aligned}$$
(45)

Finally, using the backbone curve analysis and energy balancing method described in Sect. 4, the peak dynamic displacement of the TG Model can be determined from the following sets of equations

$$\begin{aligned} \left\{ {\begin{array}{l} \pm \left( {\frac{3}{4}\gamma _1 +\frac{3}{4}\gamma _2 } \right) X_\mathrm{m}^3 -\frac{9}{4}\gamma _2 X_\mathrm{am} X_\mathrm{m}^2 \\ \quad \pm \left( {\alpha _1 +\alpha _2 -\beta -\Omega ^{2}+\frac{9}{4}\gamma _2 X_\mathrm{am}^2 } \right) X_\mathrm{m} \\ -\left( {v+\alpha _2 -\beta } \right) X_\mathrm{am} -\frac{3}{4}\gamma _2 X_\mathrm{am}^3 =0 \\ \frac{3}{4}\gamma _2 X_\mathrm{am}^3 \mp \frac{9}{4}\gamma _2 X_\mathrm{m} X_\mathrm{am}^2\\ +\left( {v+\alpha _2 -\sigma \Omega ^{2}+\frac{9}{4}\gamma _2 X_\mathrm{m}^2 } \right) X_\mathrm{am} \\ \quad \mp \left( {\left( {v+\alpha _2 -\beta } \right) X_\mathrm{m} +\frac{3}{4}\gamma _2 X_\mathrm{m}^3 } \right) =0 \\ \zeta _1 \Omega ^{2}X_\mathrm{m}^2 +\left( {\zeta _1 +\sigma \zeta _2 } \right) \Omega ^{2}X_\mathrm{am}^2 \mp 2\zeta _1 \Omega ^{2}X_\mathrm{m} X_\mathrm{am}\\ \quad =\frac{\Omega X_\mathrm{m} F_\mathrm{e} }{2} \\ \end{array}} \right. . \end{aligned}$$
(46)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, S., Neild, S.A. et al. Comparison of the dynamic performance of nonlinear one and two degree-of-freedom vibration isolators with quasi-zero stiffness. Nonlinear Dyn 88, 635–654 (2017). https://doi.org/10.1007/s11071-016-3266-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3266-3

Keywords

Navigation