Skip to main content
Log in

Quasi-time-optimal controller design for a rigid-flexible multibody system via absolute coordinate-based formulation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Previous studies have shown that the absolute coordinate-based formulation is an accurate modeling approach for the rigid-flexible multibody system subject to both large rotation and large deformation. However, it is almost impossible to design the complex controller for a rigid-flexible multibody system via the absolute coordinate-based formulation because of its high dimensions. The primary aim of this study is to design a quasi-optimal controller for a rigid-flexible multibody system via the absolute coordinate-based formulation. The design procedure includes two steps. As the first step, the simplified model for a rigid-flexible multibody system is established via the floating frame of reference formulation first, and then, a time-optimal controller is designed for the simplified model by using the Gauss pseudo-spectral method. In the second step, a quasi-time-optimal closed-loop tracking controller is achieved for the absolute coordinate-based formulation of the rigid-flexible multibody system by superposing a PD controller to track the pre-designed optimal trajectory. The paper presents two case studies for a hub-beam system, where only the motion of the rigid part is observable and driven. The numerical results of the two case studies well verify the effectiveness of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\({{\varvec{e}}}\) :

Vector of element nodal coordinates

EA:

Tensile stiffness of beam

EI:

Bending stiffness of beam

G :

End-point constraints

h :

General state-control path constraints

J :

Bolza cost function

\({{\varvec{K}}}_d \) :

Proportional gain matrix

\({{\varvec{K}}}_F \) :

Stiffness matrix in FFR formulation

\({{\varvec{K}}}_p \) :

Differential gain matrix

\({{\varvec{M}}}^{e}\) :

Mass matrix of an element

\({{\varvec{M}}}_A \) :

Mass matrix of rigid-flexible multibody system

\({{\varvec{M}}}_f \) :

Mass matrix of flexible part

\({{\varvec{M}}}_r \) :

Mass matrix of rigid part

\({{\varvec{M}}}_F \) :

Mass matrix in FFR formulation

\(p_i \) :

ith modal coordinate of cantilever beam

\({{\varvec{Q}}}_{Ae}\) :

External force vector applied on rigid-flexible multibody system

\({{\varvec{Q}}}_{Ak}\) :

Elastic force vector applied on rigid-flexible multibody system

\({{\varvec{Q}}}_{Ff} \) :

Generalized external force vector in FFR formulation

\({{\varvec{Q}}}_{Fv} \) :

Summation of the centrifugal force vector and the Coriolis force vector in FFR formulation

\({{\varvec{Q}}}_r \) :

Generalized force vector applied on rigid part

\({{\varvec{Q}}}_e^e \) :

External force vector applied on an element

\({{\varvec{Q}}}_k^e \) :

Elastic force vector applied on an element

\({{\varvec{Q}}}_e^f \) :

External force vector applied on flexible part

\({{\varvec{Q}}}_k^f \) :

Elastic force vector applied on flexible part

\({{\varvec{q}}}_A \) :

Generalized coordinate vector of rigid-flexible multibody system

\({{\varvec{q}}}_F \) :

Generalized coordinate vector in FFR formulation

\({{\varvec{q}}}_f \) :

Generalized coordinate vector of flexible part

\({{\varvec{q}}}_r \) :

Generalized coordinate vector of rigid part

r :

Displacement field of an element

S :

Shape function matrix

T :

Kinetic energy of an element

\(T_0 \) :

Moment applied on the hub

\(t_f \) :

Final moment

U :

Strain energy

u :

Control variable vector

\({{\varvec{u}}}_F \) :

Nonzero terms in \({{\varvec{Q}}}_{Ff} \)

\({{\varvec{u}}}_{F\mathrm{ref}} \) :

Designed optimal controller

\({{\varvec{u}}}_\mathrm{PD} \) :

PD controller used to track the designed optimal trajectory

\({{\varvec{u}}}^{L}\) :

Vector of minima of control variable

\({{\varvec{u}}}^{U}\) :

Vector of maxima of control variable

x :

State variable vector

\({{\varvec{x}}}_A \) :

State vector in ACB formulation

\({{\varvec{x}}}_{A1} \) :

Observable state vector in ACB formulation

\({{\varvec{x}}}_{A2} \) :

Unobservable state vector in ACB formulation

\({{\varvec{x}}}_F \) :

State vector in FFR formulation

\({{\varvec{x}}}_{F1} \) :

Observable state vector in FFR formulation

\({{\varvec{x}}}_{F2} \) :

Unobservable state vector in FFR formulation

\({{\varvec{x}}}_{F\mathrm{ref}} \) :

Designed optimal trajectory

\(\varepsilon _1 \) :

A very small value

\(\rho \) :

Density of flexible part

\(\theta \) :

Attitude angle of hub

\(\dot{\theta }\) :

Rotation speed of hub

\({\varvec{\Phi }}_f ({{\varvec{q}}}_f )\) :

Constraint equations of flexible part

\({\varvec{\Phi }}_r ({{\varvec{q}}}_r )\) :

Constraint equations of rigid part

\({\varvec{\Phi }}_{r-f} ({{\varvec{q}}}_r ,{{\varvec{q}}}_f )\) :

Constraint equations between rigid part and flexible part

\({\varvec{\Phi }}_A \) :

Constraint equations of rigid-flexible multibody system

ACB:

Absolute coordinate-based

ACF:

Absolute coordinate formulation

AMM:

Assumed mode method

ANCF:

Absolute nodal coordinate formulation

FEM:

Finite element method

FFR:

Floating frame of reference

LGR:

Legendre-Gauss-Radau

OOC-FFR:

Open-loop optimal controller based on FFR formulation

PD:

Proportional derivative

PID:

Proportional integral derivative

References

  1. Ayoubi, M., Sendi, C.: Takagi–Sugeno fuzzy model-based control of spacecraft with flexible appendage. J. Astronaut. Sci. 61, 40–59 (2015)

    Article  Google Scholar 

  2. Chen, T., Wen, H., Hu, H., Jin, D.: Output consensus and collision avoidance of a team of flexible spacecraft for on-orbit autonomous assembly. Acta Astronaut. 121, 271–281 (2016)

    Article  Google Scholar 

  3. Di Gennaro, S.: Output stabilization of flexible spacecraft with active vibration suppression. IEEE Trans. Aerosp. Electon. Syst. 39, 747–759 (2003)

    Article  Google Scholar 

  4. Cai, G.P., Hong, J., Yang, S.X.: Dynamic analysis of a flexible hub-beam system with tip mass. Mech. Res. Commun. 32, 173–190 (2005)

    Article  MATH  Google Scholar 

  5. Hu, Q.: Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits. Nonlinear Dyn. 55, 301–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Azadi, M., Fazelzadeh, S.A., Eghtesad, M., Azadi, E.: Vibration suppression and adaptive-robust control of a smart flexible satellite with three axes maneuvering. Acta Astronaut. 69, 307–322 (2011)

    Article  Google Scholar 

  7. Du, H., Li, S.: Attitude synchronization control for a group of flexible spacecraft. Automatica 50, 646–651 (2014)

    Article  MathSciNet  Google Scholar 

  8. Xiao, Y., Ye, D., Yang, Z., Sun, Z.: Research on attitude adjustment control for large angle maneuver of rigid-flexible coupling spacecraft. In: The 8th International Conference on Intelligent Robotics and Applications (ICIRA2015), pp. 24–33 (2015)

  9. Liu, C., Tian, Q., Hu, H.: Dynamics and control of a spatial rigid-flexible multibody system with multiple cylindrical clearance joints. Mech. Mach. Theory 52, 106–129 (2012)

    Article  Google Scholar 

  10. de Jalón, J.: Twenty-five years of natural coordinates. Multibody Syst. Dyn. 18, 15–33 (2007)

  11. Escalona, J.L., Hussien, H.A., Shabana, A.A.: Application of the absolute nodal co-ordinate formulation to multibody system dynamics. J. Sound Vib. 214, 833–851 (1998)

    Article  Google Scholar 

  12. Hyldahl, P., Mikkola, A., Balling, O., Sopanen, J.: Behavior of thin rectangular ANCF shell elements in various mesh configurations. Nonlinear Dyn. 78, 1277–1291 (2014)

    Article  Google Scholar 

  13. Mikkola, A.M., Matikainen, M.K.: Development of elastic forces for a large deformation plate element based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 1, 103–108 (2005)

    Article  Google Scholar 

  14. Sun, J., Tian, Q., Hu, H.: Structural optimization of flexible components in a flexible multibody system modeled via ANCF. Mech. Mach. Theory 104, 59–80 (2016)

    Article  Google Scholar 

  15. Wang, Z., Tian, Q., Hu, H.: Dynamics of spatial rigid-flexible multibody systems with uncertain interval parameters. Nonlinear Dyn. 84, 527–548 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tian, Q., Xiao, Q., Sun, Y., Hu, H., Liu, H., Flores, P.: Coupling dynamics of a geared multibody system supported by elastohydrodynamic lubricated cylindrical joints. Multibody Syst. Dyn. 33, 259–284 (2015)

    Article  MathSciNet  Google Scholar 

  17. Chang, H., Liu, C., Tian, Q., Hu, H., Mikkola, A.: Three new triangular shell elements of ANCF represented by bézier triangles. Multibody Syst. Dyn. 35, 321–351 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8, 1–12 (2013)

    Google Scholar 

  19. García-Vallejo, D., Escalona, J.L., Mayo, J., Domínguez, J.: Describing rigid-flexible multibody systems using absolute coordinates. Nonlinear Dyn. 34, 75–94 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tian, Q., Liu, C., Machado, M., Flores, P.: A new model for dry and lubricated cylindrical joints with clearance in spatial flexible multibody systems. Nonlinear Dyn. 64, 25–47 (2011)

  21. García-Vallejo, D., Mayo, J., Escalona, J.L., Domínguez, J.: Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements. Multibody Syst. Dyn. 20, 1–28 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tian, Q., Zhang, Y., Chen, L., Yang, J.: Two-link flexible manipulator modelling and tip trajectory tracking based on the absolute nodal coordinate method. Int. J. Robot. Autom. 24, 103–110 (2009)

    Google Scholar 

  23. García-Vallejo, D., Mayo, J., Escalona, J.L., Domínguez, J.: Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation. Nonlinear Dyn. 35, 313–329 (2004)

    Article  MATH  Google Scholar 

  24. Garcia-Vallejo, D., Mayo, J., Escalona, J.L., Dominguez, J.: Three-dimensional formulation of rigid-flexible multibody systems with flexible beam elements. Multibody Syst. Dyn. 20, 1–28 (2008)

  25. Pan, K., Liu, J.: Investigation on the choice of boundary conditions and shape functions for flexible multi-body system. Acta Mech. Sin. 28, 180–189 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yoo, H.H., Lee, S.H., Shin, S.H.: Flapwise bending vibration analysis of rotating multi-layered composite beams. J. Sound Vib. 286, 745–761 (2005)

    Article  MATH  Google Scholar 

  27. Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56, 553–614 (2003)

    Article  Google Scholar 

  28. Yang, J.B., Jiang, L.J., Chen, D.: Dynamic modelling and control of a rotating Euler–Bernoulli beam. J. Sound Vib. 274, 863–875 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kane, T.R., Ryan, R., Banerjee, A.K.: Dynamics of a cantilever beam attached to a moving base. J. Guid. Control Dyn. 10, 139–151 (1987)

    Article  Google Scholar 

  30. Wen, H., Jin, D.P., Hu, H.Y.: Optimal feedback control of the deployment of a tethered subsatellite subject to perturbations. Nonlinear Dyn. 51, 501–514 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21, 193–207 (1998)

    Article  MATH  Google Scholar 

  32. Ross, I.M., Fahroo, F.: Pseudospectral knotting methods for solving nonsmooth optimal control problems. J. Guid. Control Dyn. 27, 397–405 (2004)

    Article  Google Scholar 

  33. Rao, A.V., Benson, D.A., Darby, C., Patterson, M.A., Francolin, C., Sanders, I., Huntington, G.T.: Algorithm 902: GPOPS, a matlab software for solving multiple-phase optimal control problems using the gauss pseudospectral method. ACM Trans. Math. Softw. 37, 1–39 (2010)

    Article  Google Scholar 

  34. Garg, D., Patterson, M.A., Francolin, C., Darby, C.L., Huntington, G.T., Hager, W.W., Rao, A.V.: Direct trajectory optimization and costate estimation of general optimal control problems using a radau pseudospectral method. Comput. Optim. Appl. 49, 335–358 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Garg, D., Patterson, M., Hager, W.W., Rao, A.V., Benson, D.A., Huntington, G.T.: A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46, 1843–1851 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Garg, D., Hager, W.W., Rao, A.V.: Pseudospectral methods for solving infinite-horizon optimal control problems. Automatica 47, 829–837 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Guy, N., Alazard, D., Cumer, C., Charbonnel, C.: Dynamic modeling and analysis of spacecraft with variable tilt of flexible appendages. J. Dyn. Syst. Trans ASME 136, 210201–2102010 (2014)

    Google Scholar 

  38. Liu, J., Lu, H.: Rigid-flexible coupling dynamics of three-dimensional hub-beams system. Multibody Syst. Dyn. 18, 487–510 (2007)

    Article  MATH  Google Scholar 

  39. Berzeri, M., Shabana, A.A.: Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation. J. Sound Vib. 235, 539–565 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 11290153, 11402111 and 11372130, and in part by Foundation for the Author of National Excellent Doctoral Dissertation of China under Grant 201233.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Wen, H., Hu, H. et al. Quasi-time-optimal controller design for a rigid-flexible multibody system via absolute coordinate-based formulation. Nonlinear Dyn 88, 623–633 (2017). https://doi.org/10.1007/s11071-016-3265-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3265-4

Keywords

Navigation