Skip to main content
Log in

Distributed attitude control for multiple flexible spacecraft under actuator failures and saturation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper solves the problem of attitude consensus for flexible spacecraft formation under actuator failures and saturation constraints. Three insightful distributed consensus control laws are designed based on the Lyapunov’s stability theory and graph theory. The induced oscillations of the spacecraft’s flexible appendages are compensated online with adaptive update parameters. Attitude consensus for the multiple spacecraft system can be achieved with limited information transfer. The modal variables of the flexible appendages are avoided in the distributed controllers in order to reduce the payload of the spacecraft. In addition, the issue of actuator saturation is rejected by applying a switching control scheme. Numerical simulations are performed to demonstrate that the proposed controller can guarantee attitude consensus despite the presence of modeling uncertainties, external disturbances, and simultaneous loss of actuator effectiveness faults and additive faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang, D.P., Chen, Z., Liu, X.D.: Distributed adaptive attitude tracking of multiple spacecraft with a leader of bounded unknown input. Int. J. Control Autom. Syst. 11, 1–9 (2013)

    Article  Google Scholar 

  2. Chen, M.Z.Q., Zhang, L., Su, H., Chen, G.: Stabilizing solution and parameter dependence of modified algebraic Riccati equation with application to discrete-time network synchronization. IEEE Trans. Autom. Control 60, 228–233 (2016)

    Article  MathSciNet  Google Scholar 

  3. Qian, Y.F., Wu, X.Q., Lv, J.H., Lu, J.A.: Consensus of second-order multi-agent systems with nonlinear dynamics and time delay. Nonlinear Dyn. 78, 495–503 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhao, Y., Liu, Y., Li, Z., Duan, Z.: Distributed average tracking for multiple signals generated by linear dynamical systems: an edge-based framework. Automatica 75, 158–166 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhao, Y., Liu, Y.F.: Distributed average computation for multiple time-varying signals with output measurements. Int. J. Robust Nonlinear Control 26, 2899–2915 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wen, G., Yu, W., Li, Z., Yu, X., Cao, J.: Neuro-adaptive consensus tracking of multiagent systems with a high-dimensional leader. IEEE Trans. Cybern. (2016). doi:10.1109/TCYB.2016.2556002

  7. Ren, W., Beard, R.W.: Decentralized scheme for spacecraft formation flying via the virtual structure approach. J. Guid. Control Dyn. 27, 73–82 (2004)

    Article  Google Scholar 

  8. Yu, W.W., DeLellis, P., Chen, G., Bernardo, M., Kurths, J.: Distributed adaptive control of synchronization in complex networks. IEEE Trans. Autom. Control 57, 2153–2158 (2012)

    Article  MathSciNet  Google Scholar 

  9. Yang, D.P., Ren, W., Liu, X.D.: Fully distributed adaptive sliding-mode controller design for containment control of multiple Lagrangian systems. Syst. Control Lett. 72, 44–52 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dong, X.G., Cao, X.B., Zhang, J.X., Shi, L.: A robust adaptive control law for satellite formation flying. Acta Autom. Sin. 39, 128–137 (2013)

    Article  MathSciNet  Google Scholar 

  11. Zhao, L., Jia, Y.M.: Decentralized adaptive attitude synchronization control for spacecraft formation using nonsingular fast terminal sliding mode. Nonlinear Dyn. 78, 2779–2794 (2014)

    Article  MATH  Google Scholar 

  12. Wu, Y.H., Cao, X.B., Zheng, P.F., Zeng, Z.K.: Variable structure-based decentralized relative attitude-coordinated control for satellite formation. IEEE Aerosp. Electron. Syst. Mag. 27, 18–25 (2012)

    Article  Google Scholar 

  13. Wu, B.L., Wang, D.W., Poh, E.K.: Decentralized sliding-mode control for attitude synchronization in spacecraft formation. Int. J. Robust Nonlinear Control 23, 1183–1197 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Abdessameud, A., Tayebi, A.: Attitude synchronization of a group of spacecraft without velocity measurements. IEEE Trans. Autom. Control 54, 2642–2648 (2009)

    Article  MathSciNet  Google Scholar 

  15. Liu, Y.F., Geng, Z.Y.: Finite-time optimal formation tracking control of vehicles in horizontal plane. Nonlinear Dyn. 76, 481–495 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, Y.F., Zhao, Y., Chen, G.R.: Finite-time formation tracking control for multiple vehicles: a motion planning approach. Int. J. Robust Nonlinear Control 26, 3130–3149 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, X.X., Wu, Z.Y., Cao, J.D.: Finite-time synchronization of complex networks with nonidentical discontinuous nodes. Nonlinear Dyn. 73, 2313–2327 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lu, K.F., Xia, Y.Q.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49, 3591–3599 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lu, K.F., Xia, Y.Q.: Finite-time attitude stabilization for rigid spacecraft. Int. J. Robust Nonlinear Control 25, 32–51 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lu, K.F., Xia, Y.Q., Fu, M.Y., Yu, C.M.: Adaptive finite-time attitude stabilization for rigid spacecraft with actuator faults and saturation constraints. Int. J. Robust Nonlinear Control 26, 28–46 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Du, H.B., Li, S.H., Qian, C.J.: Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Trans. Autom. Control 56, 2711–2717 (2011)

    Article  MathSciNet  Google Scholar 

  22. Zhou, J.K., Hu, Q.L., Friswell, M.I.: Decentralized finite time attitude synchronization control of satellite formation flying. J. Guid. Control Dyn. 36, 185–195 (2013)

    Article  Google Scholar 

  23. Meng, Z.Y., Ren, W., You, Z.: Distributed finite-time attitude containment control for multiple rigid bodies. Automatica 46, 2092–2099 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ren, W., Beard, R.W., Atkins, E.M.: Information consensus in multivehicle cooperative control. IEEE Control Syst. Mag. 27, 71–82 (2007)

    Article  Google Scholar 

  25. Xia, K.W., Huo, W.: Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with uncertainties. Nonlinear Dyn. 84, 1683–1695 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sun, L., Huo, W.: Adaptive robust control with \(L2\)-gain performance for autonomous spacecraft proximity maneuvers. J. Spacecr. Rockets 53, 249–257 (2016)

    Article  Google Scholar 

  27. Du, H.B., Li, S.H.: Attitude synchronization control for a group of flexible spacecraft. Automatica 50, 646–651 (2014)

    Article  MathSciNet  Google Scholar 

  28. Du, H.B., Li, S.H.: Attitude synchronization for flexible spacecraft with communication delays. IEEE Trans. Autom. Control 61, 3625–3630 (2016)

    Article  MathSciNet  Google Scholar 

  29. Du, H.B., Chen, M.Z.Q., Wen, G.H.: Leader-following attitude consensus for spacecraft formation with rigid and flexible spacecraft. J. Guid. Control Dyn. 39, 941–948 (2016)

    Google Scholar 

  30. Zou, A.M., Kumar, K.D.: Robust attitude coordination control for spacecraft formation flying under actuator failures. J. Guid. Control Dyn. 35, 1247–1255 (2012)

    Article  Google Scholar 

  31. Wu, B.L., Wang, D.W., Poh, E.K.: Decentralized sliding-mode control for spacecraft attitude synchronization under actuator failures. Acta Astronaut. 105, 333–343 (2014)

    Article  Google Scholar 

  32. Zhou, N., Xia, Y.Q.: Distributed fault-tolerant control design for spacecraft finite-time attitude synchronization. Int. J. Robust Nonlinear Control 26, 2994–3017 (2016)

  33. Shuster, M.D.: A survey of attitude representations. J. Astronaut. Sci. 41, 439–517 (1993)

    MathSciNet  Google Scholar 

  34. Gennaro, S.D.: Output attitude tracking for flexible spacecraft. Automatica 38, 1719–1726 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Huang, L.: Foundamentals of Stability and Robust Control. Science Press, Beijing (2003)

    Google Scholar 

  36. Shen, H., Wu, Z.G., Park, J.H.: Reliable mixed passive and \(H_\infty \) filtering for semi-Markov jump systems with randomly occurring uncertainties and sensor failures. Int. J. Robust Nonlinear Control 25, 3231–3251 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shen, H., Park, J.H., Wu, Z.G.: Finite-time reliable \(L_2\)-\(L_\infty /H_\infty \) control for Takagi–Sugeno fuzzy systems with actuator faults. IET Control Theory Appl. 8, 688–696 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grants 61225013, 61673026, 61528301 and 11332001. The authors gratefully acknowledge Luke Barnwell’s help in revising this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhisheng Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Wang, Q. & Duan, Z. Distributed attitude control for multiple flexible spacecraft under actuator failures and saturation. Nonlinear Dyn 88, 529–546 (2017). https://doi.org/10.1007/s11071-016-3258-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3258-3

Keywords

Navigation