Skip to main content
Log in

Mutual-information matrix analysis for nonlinear interactions of multivariate time series

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Random matrix theory (RMT) is a sophisticated technique to analyze the cross-correlations of multivariate time series, while it suffers from the limitation on characterizing the linear relationships. In this paper, we propose a new mutual-information matrix analysis to study the nonlinear interactions of multivariate time series, including: (i) The N-dimensional mutual information ranging between 0 and 1 can describe the strength of nonlinear interactions. (ii) The eigenvalues of the random mutual-information matrix yield the Marchenko–Pastur distribution, except that the dominant eigenvalue is significantly larger than the other eigenvalues. (iii) The distribution of most eigenvectors components of the random mutual-information matrix subjects to the Gaussian distribution, while the dominant eigenvector components tend to follow the uniform distribution. A large value of the N-dimensional mutual information, and the deviations from the eigenvalues distribution as well as the distribution of the eigenvectors components both imply the presence of interactions among the underlying time series. In the empirical analysis, we design a simulation which reveals the advantages of the mutual-information analysis over the RMT. We also apply the mutual-information matrix analysis to a real-world application that indicates the presence of interactions among the stock time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reinsel, G.C.: Elements of Multivariate Time Series Analysis. Springer Science & Business Media, Berlin (2003)

    MATH  Google Scholar 

  2. Lütkepohl, H.: New Introduction to Multiple Time Series Analysis. Springer Science & Business Media, Berlin (2005)

    Book  MATH  Google Scholar 

  3. Zhao, X., Shang, P., Lin, A., Chen, G.: Multifractal fourier detrended cross-correlation analysis of traffic signals. Phys. A. Stat. Mech. Appl. 21(390), 3670–3678 (2011)

    Article  Google Scholar 

  4. Celikoglu, H.B., Silgu, M.A.: Extension of traffic flow pattern dynamic classification by a macroscopic model using multivariate clustering. Trans. Sci. (2016)

  5. Li, Y., Jiang, X., Zhu, H., He, X., Peeta, S., Zheng, T., Li, Y.: Multiple measures-based chaotic time series for traffic flow prediction based on bayesian theory. Nonlinear Dyn. 85(1), 179–194 (2016)

  6. Zhao, X., Shang, P., Wang, J.: Measuring information interactions on the ordinal pattern of stock time series. Phys. Rev. E 87(2), 022805 (2013)

    Article  Google Scholar 

  7. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Stanley, H.E.: Universal and nonuniversal properties of cross correlations in financial time series. Phys. Rev. Lett. 83(7), 1471 (1999)

    Article  Google Scholar 

  8. Pan, R.K., Sinha, S.: Collective behavior of stock price movements in an emerging market. Phys. Rev. E. 76(4), 046116 (2007)

    Article  Google Scholar 

  9. Hair, J.F., et al. Multivariate Data Analysis: A Global Perspective, 7th edn. Prentice Hall, Upper Saddle River (2009)

  10. Yin, Y., Shang, P.: Multivariate multiscale sample entropy of traffic time series. Nonlinear Dyn. 86(1), 479–488 (2016)

    Article  MathSciNet  Google Scholar 

  11. Zhao, X., Shang, P.: Principal component analysis for non-stationary time series based on detrended cross-correlation analysis. Nonlinear Dyn. 84(2), 1033–1044 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jolliffe, I.: Principal Component Analysis. Wiley Online Library, Hoboken (2002)

    MATH  Google Scholar 

  13. Wigner, E.P.: On the statistical distribution of the widths and spacings of nuclear resonance levels. Math. Proc. Camb. 47(4), 790–798 (1951)

    Article  MATH  Google Scholar 

  14. Dyson, F.J.: Statistical theory of the energy levels of complex systems. I. J. Math. Phys. 3(1), 140–156 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dyson, F.J., Mehta, M.L.: Statistical theory of the energy levels of complex systems. IV. J. Math. Phys. 4(5), 701–712 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mehta, M.L., Dyson, F.J.: Statistical theory of the energy levels of complex systems. V. J. Math. Phys. 4(5), 713–719 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  17. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Guhr, T., Stanley, H.E.: Random matrix approach to cross correlations in financial data. Phys. Rev. E. 65(6), 066126 (2002)

    Article  Google Scholar 

  18. Beléndez, A., Pascual, C., Méndez, D.I., Beléndez, T., Neipp, C.: Exact solution for the nonlinear pendulum. Revista brasileira de ensino de física 29(4), 645–648 (2007)

    Article  Google Scholar 

  19. Blümich, B.: White noise nonlinear system analysis in nuclear magnetic resonance spectroscopy. Prog. Nuclear Magn. Reson. Spectrosc. 19(4), 331–417 (1987)

  20. Hoyer, D., Schmidt, K., Bauer, R., Zwiener, U., Kohler, M., Luthke, B., Eiselt, M.: Nonlinear analysis of heart rate and respiratory dynamics. IEEE Eng. Med. Biol. Mag. 16(1), 31–39 (1997)

    Article  Google Scholar 

  21. Schreiber, T., Kaplan, D.T.: Signal separation by nonlinear projections: the fetal electrocardiogram. Phys. Rev. E 53(5), R4326 (1996)

    Article  Google Scholar 

  22. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys. Rev. E 69(6), 066138 (2004)

    Article  MathSciNet  Google Scholar 

  23. Wang, B., Shen, Y.: A method on calculating high-dimensional mutual information and its application to registration of multiple ultrasound images. Ultrasonics 44, e79–e83 (2006)

    Article  Google Scholar 

  24. Jakobsen, S.K.: Mutual information matrices are not always positive semidefinite. IEEE Trans. Inf. Theory 60(5), 2694–2696 (2014)

    Article  MathSciNet  Google Scholar 

  25. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  26. Patil, A., Santhanam, M.S.: Random matrix approach to categorical data analysis. Phys. Rev. E 92(3), 032130 (2015)

    Article  Google Scholar 

  27. Zhao, X., Shang, P., Lin, A.: Distribution of eigenvalues of detrended cross-correlation matrix. EPL (Europhysics Letters) 107(4), 40008 (2014)

    Article  Google Scholar 

  28. Hesterberg, T., Moore, D.S., Monaghan, S., Clipson, A., Epstein, R.: Bootstrap methods and permutation tests. Introd. Pract. Stat. 5, 1–70 (2005)

    Google Scholar 

  29. Zhao, X., Shang, P.: Measuring the uncertainty of coupling. EPL (Europhysics Letters) 110(6), 60007 (2015)

    Article  Google Scholar 

  30. Jones, K.R.W.: Entropy of random quantum states. J. Phys. A Math. General 23(23), L1247 (1990)

    Article  MathSciNet  Google Scholar 

  31. Bracewell, R.N.: The Fourier transform and its applications. Am. J. Phys. 34(8), 712 (1966)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support by the MOE (Ministry of Education in China) Project of Humanities and Social Sciences (16YJC910007), the China Postdoctoral Science Foundation Funded Project (B16M00090), and Beijing Outstanding Talent Project (B16H200060) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Shang, P. & Huang, J. Mutual-information matrix analysis for nonlinear interactions of multivariate time series. Nonlinear Dyn 88, 477–487 (2017). https://doi.org/10.1007/s11071-016-3254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3254-7

Keywords

Navigation